Gauge fields and Kaluza-Klein theory

Correspondance potential A_{μ} - connection and field $\mathrm{F}_{\mu \nu}$ - curvature
In a loop ($+\mathrm{dx},+\mathrm{dy},-\mathrm{dx},-\mathrm{dy})$ the phase increases by:
$A_{x} d x+\left(A_{y}+\partial_{x} A_{y} d x\right) d y-\left(A_{x}+\partial_{y} A_{x} d y\right) d x-A_{y} d y$
$=\left(\partial_{x} A_{y}-\partial_{y} A_{x}\right) d x d y$
$=F_{x y} d x d y$

Kaluza-Klein theory

The vielbeins $\mathrm{e}^{\mathrm{a}}{ }_{\mu}$ are the matrices of base changing between curved and locally flat coordinates.
The metric tensor $g_{\mu \nu}$ in curved coordinates is:
$g_{\mu \nu}=\eta_{a b} e^{\mathrm{a}}{ }_{\mu} \mathrm{e}^{\mathrm{b}}{ }_{v}$
where η_{ab} is the metric tensor of the flat space-time (1-1-1-1 on the diagonal, 0 elsewhere).
According to Kaluza-Klein theory, gauge fields are equivalent to gravitation (curvature of space-time according to general relativity) in compactified dimensions.

The vielbein is :

```
ea}\mp@subsup{}{\mu}{=}=(\begin{array}{c}{\mp@subsup{e}{}{\primea}\mp@subsup{a}{\mu}{\prime}}
    ( e''a''\nu}\mp@subsup{\nu}{}{\prime\prime}\mp@subsup{A}{}{\mp@subsup{V}{}{\prime\prime}}\mp@subsup{}{\mu}{\prime}\quad\mp@subsup{e}{}{\prime\primea''}\mp@subsup{\mu}{}{\prime\prime}
```

where $\mathrm{e}^{\mathrm{ra}}{ }_{\mu}$ is the vielbein of the space-time, $\mathrm{e}^{\mathrm{ma}{ }^{\prime \prime}}{ }_{\mu}{ }^{\prime \prime}$ is the vielbein of the compactified dimensions, and $\mathrm{A}^{v^{\prime \prime}}{ }_{\mu}$ is the potential.
We can number the dimensions of space-time from 0 to $3(0=\mathrm{t}, 1=\mathrm{x}, 2=\mathrm{y}, 3=\mathrm{z})$ and the compactified dimensions from 4 to $\mathrm{d}-1$, and consider all the tensor defined for indices varying from 0 to $d-1$, completed with zeros, for example :

```
\(A^{m}{ }_{\mu}=\left(\begin{array}{ll}0 & 0\end{array}\right)\)
    \(\left(\begin{array}{ll}A^{m} \mu & 0\end{array}\right)\)
```

with indices $\mu=0 . .3$ and $\mathrm{m}=4 . . \mathrm{d}-1 ; \mathrm{A}^{\mathrm{m}}{ }_{\mu}$ is 0 if μ is not in $0 . .3$ or m is not in 4 ..d-1.
With this convention, we have :
$\mathrm{e}^{\mathrm{a}}{ }_{\mu}=\mathrm{e}^{\prime \mathrm{a}}{ }_{\mu}+\mathrm{e}^{\mathrm{ma}}{ }_{\mathrm{n}} \mathrm{A}^{\mathrm{n}}{ }_{\mu}+\mathrm{e}^{\mathrm{ma}}{ }_{\mu}$
$=\mathrm{e}^{\mathrm{ra}}{ }_{\mu}{ }^{\prime}+\mathrm{e}^{\prime \prime \prime}{ }_{\mathrm{n}}\left(\mathrm{A}^{\mathrm{n}}{ }_{\mu}+\delta^{\mathrm{n}}{ }_{\mu}\right)$
$=\mathrm{e}^{\prime \mathrm{a}}{ }_{\mu}+\mathrm{e}^{\prime \prime \mathrm{a}}{ }_{\mu}+\mathrm{e}^{\prime \prime \mathrm{a}}{ }_{\mathrm{m}} \mathrm{A}^{\mathrm{m}}{ }_{\mu}$
Then the metric tensor in curved coordinates is :
$g_{\mu \nu}=\eta_{a b} e^{a}{ }_{\mu} e^{b}{ }_{v}$
$=\eta_{a b}\left(\mathrm{e}^{\prime \mathrm{a}}{ }_{\mu}+\mathrm{e}^{\prime \prime \mathrm{a}}{ }_{\mu}+\mathrm{e}^{\prime \prime \mathrm{a}}{ }_{\mathrm{m}} \mathrm{A}^{\mathrm{m}}{ }_{\mu}\right)\left(\mathrm{e}^{\prime \mathrm{b}}{ }_{v}+\mathrm{e}^{\prime \prime}{ }_{v}+\mathrm{e}^{\prime \prime}{ }_{\mathrm{n}} \mathrm{A}^{\mathrm{n}}{ }_{\nu}\right)$

$e^{\prime \prime b}{ }_{v}+\eta_{a b} e^{\prime \prime 2}{ }_{m} A^{m}{ }_{\mu} e^{\prime \prime b}{ }_{n} A^{n}{ }_{v}$
Since $\eta_{a b} \mathrm{e}^{\prime a}{ }_{\mu} \mathrm{e}^{\mathrm{eb}}{ }_{v}=0$ because $\eta_{a b}$ is not 0 only if $\mathrm{a}=\mathrm{b}$, $\mathrm{e}^{\prime \mathrm{a}}{ }_{\mu}$ is not zero only if a is in $0 . .3$ and $\mathrm{e}^{\prime \prime b}{ }_{v}$ is not zero only if b is in $4 . . \mathrm{d}-1$, and same for $\eta_{a b} \mathrm{e}^{\prime \prime \mathrm{a}}{ }_{\mu} \mathrm{e}^{\prime \mathrm{b}}{ }_{v}$ we have :

$=g_{\mu \nu}^{\prime}+g^{\prime \prime}{ }_{\mu \nu}+g^{\prime \prime}{ }_{\mu n} A^{n}{ }_{v}+g^{\prime \prime}{ }_{m \nu} A^{m}{ }_{v}+g^{\prime \prime}{ }_{m n} A^{m}{ }_{\mu} A^{n}{ }_{v}$

