05/07/2020

Gauge fields and Kaluza-Klein theory

Correspondance potential A_{μ} - connection and field $F_{\mu\nu}$ - curvature

In a loop (+dx,+dy,-dx,-dy) the phase increases by : $A_x dx + (A_y + \partial_x A_y dx) dy - (A_x + \partial_y A_x dy) dx - A_y dy$ $= (\partial_x A_y - \partial_y A_x) dx dy$ $= F_{xy} dx dy$

Kaluza-Klein theory

The vielbeins $e^a_{\ \mu}$ are the matrices of base changing between curved and locally flat coordinates. The metric tensor $g_{\mu\nu}$ in curved coordinates is :

 $g_{\mu\nu} = \eta_{ab} e^a{}_{\mu} e^b{}_{\nu}$

where η_{ab} is the metric tensor of the flat space-time (1 -1 -1 -1 on the diagonal, 0 elsewhere).

According to Kaluza-Klein theory, gauge fields are equivalent to gravitation (curvature of space-time according to general relativity) in compactified dimensions.

The vielbein is :

$$e^{a}{}_{\mu} = (e^{a'}{}_{\mu} 0)$$

 $(e^{a}{}_{\nu}^{\nu} A^{\nu}{}_{\mu}^{\nu} e^{a}{}_{\nu}^{\nu})$

where $e^{a'}{}_{\mu}$ is the vielbein of the space-time, $e^{a'}{}_{\mu'}$ is the vielbein of the compactified dimensions, and $A^{v''}{}_{\mu}$ is the potential.

We can number the dimensions of space-time from 0 to 3 (0=t, 1=x, 2=y, 3=z) and the compactified dimensions from 4 to d-1, and consider all the tensor defined for indices varying from 0 to d-1, completed with zeros, for example :

 $A^{m}_{\mu} = (0 0)$ $(A^{m}_{\mu} 0)$

with indices $\mu = 0..3$ and m = 4..d-1; A^{m}_{μ} is 0 if μ is not in 0..3 or m is not in 4..d-1.

With this convention, we have : $e^{a}_{\mu} = e^{a}_{\mu} + e^{a}_{n} A^{n}_{\mu} + e^{a}_{\mu}$ $= e^{a}_{\mu} + e^{a}_{n} (A^{n}_{\mu} + \delta^{n}_{\mu})$ $= e^{a}_{\mu} + e^{a}_{\mu} + e^{a}_{\mu} A^{m}_{\mu}$

Then the metric tensor in curved coordinates is :

$$\begin{split} g_{\mu\nu} &= \eta_{ab} \, e^{a}{}_{\mu} \, e^{b}{}_{\nu} \\ &= \eta_{ab} \, (e^{i}{}^{a}{}_{\mu} + e^{ii}{}^{a}{}_{\mu} + e^{ii}{}^{a}{}_{\mu} + e^{ii}{}^{a}{}_{\mu} A^{m}{}_{\mu}) \, (e^{ib}{}_{\nu} + e^{ij}{}^{b}{}_{n} A^{n}{}_{\nu}) \\ &= \eta_{ab} \, e^{ia}{}_{\mu} \, e^{ib}{}_{\nu} + \eta_{ab} \, e^{ia}{}_{\mu} \, e^{ij}{}^{b}{}_{\nu} + \eta_{ab} \, e^{ia}{}_{\mu} \, e^{ij}{}^{b}{}_{\nu} + \eta_{ab} \, e^{ii}{}^{a}{}_{\mu} \, e^{ij}{}^{b}{}_{\nu} + \eta_{ab} \, e^{ij}{}^{a}{}_{\mu} \, e^{ij}{}^{b}{}_{\nu} + \eta_{ab} \, e^{ij}{}^{a}{}_{\mu} \, e^{ij}{}^{b}{}_{\mu} \, e^{ij}$$

Since $\eta_{ab} e^{a}{}_{\mu} e^{b}{}_{\nu} = 0$ because η_{ab} is not 0 only if a = b, $e^{a}{}_{\mu}$ is not zero only if a is in 0..3 and $e^{b}{}_{\nu}$ is not zero only if b is in 4..d-1, and same for $\eta_{ab} e^{a}{}_{\mu} e^{b}{}_{\nu}$ we have :

 $g_{\mu\nu} = \eta_{ab} e^{ia}_{\ \mu} e^{ib}_{\ \nu} + \eta_{ab} e^{ia}_{\ \mu} e^{ib}_{\ \nu} + \eta_{ab} e^{ia}_{\ \mu} e^{ib}_{\ n} A^{n}_{\ \nu} + \eta_{ab} e^{ia}_{\ m} A^{m}_{\ \mu} e^{ib}_{\ \mu} + \eta_{ab} e^{ia}_{\ \mu} e^{ib}_{\ \mu} e^{ib}_{\ \mu} + \eta_{ab} e^{ia}_{\ \mu} e^{ib}_{\ \mu$