The Dirac Equation

See also :

With a metrics (+ - - -)
the Klein-Gordon equation is : ([] + m^2) PSI(x) = 0
with [] = d/dt^2 - d/dx^2 - d/dy^2 - d/dz^2

Let gamma^mu (i=0..3) be 4 matrices :

gamma^0 = ONE 0
          0 -ONE 

gamma^k = 0       sigma^k
          -sigma^k 0

ONE = 1 0 
      0 1

sigma^1 = 0 1
          1 0

sigma^2 = 0 -i
          i  0

sigma^3 = 1 0
          0 -1

Let A/ be (sum over mu = 0,1,2,3 of ) gamma^mu A_mu

The Dirac equations are :
	(i d/ - m) PSI(x) = 0
and :
	i (d_mu PSIbar) gamma^mu + m PSIbar = PSIbar (i <-d/ + m) = 0
With an electromagnetic field :
	i d PSI/dt = (alpha (p - e A) + e PHI + beta m) PSI
	i d/dt PSI(r,t) = (-i alpha nabla + beta + e aplha . A(r,t) - e A^0(r,t)) PSI(r,t)
	(alpha p + beta (m + U(x)) PSI(x,t) = i d/dt PSI(x,t)

The lagrangian is :
	L = PSIbar (i d/ - m) PSI
	= - PSIbar (i <-d/ + m) PSI
        = 1/2 (i PSIbar <-d/ PSI - i PSIbar d/ PSI) - m PSIbar PSI
	= 1/2 (i PSIbar gamma^mu d_mu PSI - i d_mu PSIbar gamma^mu PSI) - m PSIbar PSI

	L_DEM = PSIbar (i D/ - m) PSI = PSIbar (i d/ - e A/ - m) PSI
	with D_mu = d_mu + i e A_mu

	L_QED = -1/4 F_mu_nu F^mu^nu + PSIbar (i D/ - m) PSI