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Denn die Pioniere der Mathematik hatten sich von gewissen Grundlagen

brauchbare Vorstellungen gemacht, aus denen sich Schlüsse, Rechnungsarten,

Resultate ergaben, deren bemächtigten sich die Physiker, um neue Ergebnisse

zu erhalten, und endlich kamen die Techniker, nahmen oft bloß die Resultate,

setzten neue Rechnungen darauf und es entstanden Maschinen. Und plötzlich,

nachdem alles in schönste Existenz gebracht war, kamen die Mathematiker -

jene, die ganz innen herumgrübeln, - darauf, daß etwas in den Grundlagen

der ganzen Sache absolut nicht in Ordnung zu bringen sei; tatsächlich, sie

sahen zuunterst nach und fanden, daß das ganze Gebäude in der Luft stehe.

Aber die Maschinen liefen! Man muß daraufhin annehmen, daß unser Dasein

bleicher Spuk ist; wir leben es, aber eigentlich nur auf Grund eines Irrtums,

ohne den es nicht entstanden wäre.

ROBERT MUSIL: Der mathematische Mensch (1913)

1 Introduction

A central theme running through all the main areas of Mathematical Logic is the
classification of sets, functions or theories, by means of transfinite hierarchies whose
ordinal levels measure their ‘rank’ or ‘complexity’ in some sense appropriate to the
underlying context. In Proof Theory this is manifest in the assignment of ‘proof the-
oretic ordinals’ to theories, gauging their ‘consistency strength’ and ‘computational
power’. Ordinal-theoretic proof theory came into existence in 1936, springing forth
from Gentzen’s head in the course of his consistency proof of arithmetic. To put it
roughly, ordinal analyses attach ordinals in a given representation system to formal
theories. Though this area of mathematical logic has is roots in Hilbert’s “Beweis-
theorie” - the aim of which was to lay to rest all worries1 about the foundations of
mathematics once and for all by securing mathematics via an absolute proof of con-
sistency - technical results in proof theory are not different from those in any other
branch of mathematics, inasmuch as they can be understood in a way that does not
at all refer to any kind of (modified) Hilbert programme. In actuality, most proof
theorists do not consider themselves pursuing consistency proofs.

The present paper is based on the lectures that I gave at the LC ’97. The lectures
were an attempt to give an overview of results that have been achieved by means of
ordinal analyses, and to explain the current rationale and goals of ordinally informative

1As, in a rather amusing way, described by Musil in the above quote.
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proof theory as well as its salient technical tools of analysis. They were aimed at a
general logic audience, assuming very little knowledge of proof theory, basically cut
elimination for Gentzen’s sequent calculus.

The paper is divided into three parts. In Section 1 I try to explain the nature of the
connection between ordinal representation systems and theories established in ordinal
analyses. Furthermore, I gather together some general conclusions that can be drawn
from an ordinal analysis. In the literature, the result of an ordinal analysis of a given
theory T is often stated in a rather terse way by saying that the supremum of the
provable recursive well-orderings of T (hereafter called |T |sup) is a certain ordinal α.
This is at best a shorthand for a much more informative statement. From questions
that I’ve been asked over the years, I know that sloppy talk about proof-theoretic
ordinals has led to misconceptions about ordinal-theoretic proof theory. One of the
recurring questions is whether it is always possible, given a decent theory T , to cook
up a well-ordering ≺ such that the order-type of ≺ amounts to |T |sup and T proves
all initial segments of ≺ to be well-founded, thereby making a mockery of the task
of performing an ordinal analysis of T . This time I decided, I’d better take such
questions seriously. Section 1 will scrutinize the norm |.|sup, compare it with other
scales of strengths and also attend to the above and related questions.

Section 2 is devoted to results that have been achieved through ordinal analyses.
They fall into four groups: (1) Consistency of subsystems of classical second order
arithmetic and set theory relative to constructive theories, (2) reductions of theories
formulated as conservation theorems, (3) combinatorial independence results, and (4)
classifications of provable functions and ordinals.

As an introduction to the techniques used in ordinal analysis and in order to illus-
trate its more subtle features, Section 3 provides sketches of ordinal analyses for two
theories. These theories are Kripke-Platek set theory and an extension of the latter,
called KPM, which formalizes a recursively Mahlo universe of sets. KPM is consid-
erably stronger than the fragment of second order arithmetic with ∆1

2 comprehension.
It is distinguished by the fact that it is essentially the ‘strongest’ classical theory for
which a consistency proof in Martin-Löf type theory can be carried out.

2 Measures in proof theory

2.1 Gentzen’s result

Gentzen showed that transfinite induction up to the ordinal

ε0 = sup{ω, ωω, ωωω

, . . . } = least α. ωα = α

suffices to prove the consistency of Peano Arithmetic, PA. To appreciate Gentzen’s
result it is pivotal to note that he applied transfinite induction up to ε0 solely to prim-
itive recursive predicates and besides that his proof used only finitistically justified
means. Hence, a more precise rendering of Gentzen’s result is

F + PR-TI(ε0) ` Con(PA), (1)

where F signifies a theory that is acceptable in finitism (e.g. F = PRA = Primitive
Recursive Arithmetic) and PR-TI(ε0) stands for transfinite induction up to ε0 for
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primitive recursive predicates. Gentzen also showed that his result is best possible in
that PA proves transfinite induction up to α for arithmetic predicates for any α < ε0.
The compelling picture conjured up by the above is that the non-finitist part of PA
is encapsulated in PR-TI(ε0) and therefore “measured” by ε0, thereby tempting one
to adopt the following definition of proof-theoretic ordinal of a theory T :

|T |Con = least α. PRA + PR-TI(α) ` Con(T ). (2)

The foregoing definition of |T |Con is, however, inherently vague because the following
issues have not been addressed:

• How are ordinals to be represented in PRA?

• (2) is definitive only with regard to a prior choice of ordinal representation
system.

• Different ordinal representation systems may provide different answers to (2).

Notwithstanding that, for “natural” theories T and with regard to a “natural” ordinal
representation system, the ordinal |T |Con encapsulates important information about
the proof strength of T . To demonstrate the serious deficiencies of the above concept
it might be illuminating to exhibit a clearly pathological ordinal representation sys-
tem for the ordinal ω which underscores the dependence of |T |Con on the choice of the
ordinal representation system. This example is due to Kreisel [51]. For a given theory
T , it shows how to cook up an ordinal representation system which trivializes the
determination of |T |Con by coding the proof predicate for T , ProofT , into the ordinal
representation system. Suppose T is a consistent (primitive recursively axiomatized)
extension of PRA. Define

n <T m⇔
{
n < m if ∀i < n¬ProofT (i, p⊥q)
m < n if ∃i < nProofT (i, p⊥q)

where ⊥ is 0̄ = 1̄. If T were inconsistent, then there would exists a least natural
number k0 such that ProofT (k0, p⊥q) and the ordering <T would look like

k0 T>k0 − 1 T> · · · T> 0 T>k0 + 1 T>k0 + 2 T>k0 + 3 T> · · · .

Otherwise, <T is just the standard ordering on the natural numbers. At any rate, <T

is a linear ordering (provably so in PRA). However, by assumption, T is consistent
and thus n <T m ⇔ n < m. Consequently, the order-type of <T is ω. In view of its
definition, <T is primitive recursive. Furthermore,

PRA + PR− TI(<T ) ` Con(T ). (3)

Let A(x) := ∀u ≤ x¬ProofT (u, p⊥q). To see that (3) holds, it suffices to prove
PRA ` ∀x [∀y <T xA(y) → A(x)]. So assume ∀y <T aA(y). We have to show
A(a). But ¬A(a) would imply a+1 <T a and thus yield A(a+1) which implies A(a).
Therefore, A(a) must hold.
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2.2 How natural ordinal representation systems arise

Natural ordinal representation systems are frequently derived from structures of the
form

A = 〈α, f1, . . . , fn, <α〉 (4)

where α is an ordinal, <α is the ordering of ordinals restricted to elements of α and
the fi are functions

fi : α× · · · × α︸ ︷︷ ︸
ki times

−→ α

for some natural number ki.

A = 〈A, g1, . . . , gn,≺〉 (5)

is a recursive representation of A if the following conditions hold:

1. A ⊆ N

2. A is a recursive set.

3. ≺ is a recursive total ordering on A.

4. The functions gi are recursive.

5. A ∼= A, i.e. the two structures are isomorphic.

Gentzen’s ordinal representation system for ε0 is based on the Cantor normal form, i.e.
for any ordinal 0 < α < ε0 there exist uniquely determined ordinals α1, . . . , αn < α
such that

• α1 ≥ · · · ≥ αn

• α = ωα1 + · · ·ωαn .

To indicate the Cantor normal form we write α =CNF ωα1 + · · ·ωαn . Now define a
function

p . q : ε0 −→ N
by

pαq =

{
0 if α = 0
〈pα1q, . . . , pαnq〉 if α =CNF ω

α1 + · · ·ωαn

where 〈k1, · · · , kn〉 := 2k1+1 · . . . · pkn+1
n with pi being the ith prime number (or any

other coding of tuples). Further define

A0 := ran(p.q)

pαq ≺ pβq :⇔ α < β

pαq +̂ pβq := pα+ βq

pαq ·̂ pβq := pα · βq

ω̂pαq := pωαq.

Then

〈ε0,+, ·, δ 7→ ωδ, <〉 ∼= 〈A0, +̂, ·̂, x 7→ ω̂x,≺〉.

A0, +̂, ·̂, x 7→ ω̂x,≺ are recursive, in point of fact, they are all elementary recursive.
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2.3 Elementary ordinal representation systems

The next definition garners some features (following [32]) that ordinal representation
systems used in proof theory always have, and collectively calls them “elementary
ordinal representation system”. One reason for singling out this notion is that it
leads to an elegant characterization of the provably recursive functions of theories
equipped with transfinite induction principles for such ordinal representation systems
(cf. Propositions 3.19, 3.20).

Definition 2.1 Elementary recursive arithmetic, ERA, is a weak system of number
theory, in a language with 0, 1,+,×, E (exponentiation), <, whose axioms are:

1. the usual recursion axioms for +,×, E,<.

2. induction on ∆0-formulae with free variables.

ERA is referred to as elementary recursive arithmetic since its provably recursive
functions are exactly the Kalmar elementary functions, i.e. the class of functions
which contains the successor, projection, zero, addition, multiplication, and modified
subtraction functions and is closed under composition and bounded sums and products
(cf. [89]).

Definition 2.2 For a set X and and a binary relation ≺ on X, let LO(X,≺) abbre-
viate that ≺ linearly orders the elements of X and that for all u, v, whenever u ≺ v,
then u, v∈X.

A linear ordering is a pair 〈X,≺〉 satisfying LO(X,≺).

Definition 2.3 An elementary ordinal representation system (EORS) for a limit or-
dinal λ is a structure 〈A,�, n 7→ λn,+,×, x 7→ ωx〉 such that:

(i) A is an elementary subset of N.

(ii) � is an elementary well-ordering of A.

(iii) |�| = λ.

(iv) Provably in ERA, � � λn is a proper initial segment of � for each n, and⋃
n � �λn = �. In particular, ERA ` ∀y λy∈A ∧ ∀x∈A∃y [x� λy].

(v) ERA ` LO(A,�)

(vi) +,× are binary and x 7→ ωx is unary. They are elementary functions on elemen-
tary initial segments of A. They correspond to ordinal addition, multiplication
and exponentiation to base ω, respectively. The initial segments of A on which
they are defined are maximal.

n 7→ λn is an elementary function.

(vii) 〈A,�,+,×, ωx〉 satisfies “all the usual algebraic properties” of an initial segment
of ordinals. In addition, these properties of 〈A,�,+,×, ωx〉 can be proved in
ERA.
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(viii) Let ñ denote the nth element in the ordering of A. Then the correspondence
n↔ ñ is elementary.

(ix) Let α = ωβ1 + · · · + ωβk , β1 ≥ · · · ≥ βk (Cantor normal form). Then the
correspondence α ↔ 〈β1, . . . , βk〉 is elementary.

Elements of A will often be referred to as ordinals, and denoted α, β, . . . .

2.4 The conceptual problem of characterizing natural ordinal
representation systems

It is an empirical fact that ordinal representation systems emerging in proof theory
are always elementary recursive and their basic properties are provable in weak frag-
ments of arithmetic like ERA. Sommer has investigated the question of complexity of
ordinal representation systems at great length in [104, 105]. His case studies revealed
that with regard to complexity measures considered in complexity theory the com-
plexity of ordinal representation systems involved in ordinal analyses is rather low.
It appears that they are always ∆0-representable (cf. [104]) and that computations
on ordinals in actual proof-theoretic ordinal analyses can be handled in the theory
I∆0 + Ω1, where Ω1 is the assertion that the function x 7→ xlog2(x) is total.

Sommer’s findings clearly underpin the fact that the naturalness of ordinal repre-
sentation systems involved in proof-theoretic ordinal analyses cannot be described in
terms of the computational complexity of the representations of these ordinals. In-
tuitively, computational complexity is inadequate because it says nothing about how
ordinals are built up. It has been suggested (cf. [50], [25]) that it is important to
address the broader question “What is a natural well-ordering?” A criterion for nat-
uralness put forward in [50] is uniqueness up to recursive isomorphism. Furthermore,
in [50], Kreisel seems to seek naturalness in algebraic characterizations of ordered
structures. Feferman, in [22], discerns the properties of completeness, repleteness,
relative categoricity and preservation of these under iteration of the critical process
as significant features of systems of natural representation. Girard [35] appears to
propose dilators to capture the abstract notion of a notation system for ordinals.
However, in my opinion, similar attempts in the Philosophy of Science of defining
‘natural properties’ and the complete failure of these attempts show that it is futile
to look for a formal definition of ‘natural well-ordering’ that will exclude every patho-
logical example. Moreover, it is rather unlikely that such a definition would be able
to discern and explain an important feature of EORSs found in proof theory, namely
their versatility in establishing equivalences between classical non-constructive theo-
ries and intuitionistic constructive theories based on radically different ontologies. To
obtain the reductions of classical (non-constructive) theories to constructive ones (as
related, for instance, in [26], [83],§2) it appears to be pivotal to work with very special
and well-structured ordinal representation systems.

“Natural” well-orderings have arisen using several sources of inspiration:

Set-theoretical (Cantor, Veblen, Gentzen, Bachmann, Schütte, Feferman, Pfeiffer,
Isles, Bridge, Buchholz, Pohlers, Jäger, Rathjen)

• Define hierarchies of functions on the ordinals.
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• Build up terms from function symbols for those functions.

• The ordering on the values of terms induces an ordering on the terms.

Reductions in proof figures (Takeuti, Yasugi, Kino, Arai)

• Ordinal diagrams; formal terms endowed with an inductively defined or-
dering on them.

Patterns of partial elementary substructurehood (Carlson, cf. [16])

• Finite structures with Σn-elementary substructure relations .

Category-theoretical (Aczel, Girard, Vauzeilles)

• Functors on the category of ordinals (with strictly increasing functions)
respecting direct limits and pull-backs.

Examples for the set-theoretical approach to ordinal representation systems, in par-
ticular the use and role of large cardinals therein, will be presented in section 4.

2.5 Proof-theoretical reductions

Ordinal analyses of theories allow one to compare the strength of theories. This sub-
section defines the notions of proof-theoretic reducibility and proof-theoretic strength
that will be used henceforth.

All theories T considered in the following are assumed to contain a modicum of
arithmetic. For definiteness let this mean that the system PRA of Primitive Recursive
Arithmetic is contained in T , either directly or by translation.

Definition 2.4 Let T1, T2 be a pair of theories with languages L1 and L2, respectively,
and let Φ be a (primitive recursive) collection of formulae common to both languages.
Furthermore, Φ should contain the closed equations of the language of PRA.

We then say that T1 is proof-theoretically Φ-reducible to T2, written T1 ≤Φ T2, if
there exists a primitive recursive function f such that

PRA ` ∀φ ∈ Φ ∀x [ProofT1(x, φ) → ProofT2(f(x), φ)]. (6)

T1 and T2 are said to be proof-theoretically Φ-equivalent, written T1 ≡Φ T2, if T1 ≤Φ T2

and T2 ≤Φ T1.
The appropriate class Φ is revealed in the process of reduction itself, so that in

the statement of theorems we simply say that T1 is proof-theoretically reducible to T2

(written T1 ≤ T2) and T1 and T2 are proof-theoretically equivalent (written T1 ≡ T2),
respectively. Alternatively, we shall say that T1 and T2 have the same proof-theoretic
strength when T1 ≡ T2.

Remark 2.5 Feferman’s notion of proof-theoretic reducibility in [26] is more relaxed
in that he allows the reduction to be given by a T2-recursive function f , i.e.

T2 ` ∀φ ∈ Φ∀x [ProofT1(x, φ) → ProofT2(f(x), φ)]. (7)

The disadvantage of (7) is that one forfeits the transitivity of the relation ≤Φ. Further-
more, in practice, proof-theoretic reductions always come with a primitive recursive
reduction, so nothing seems to be lost by using the stronger notion of reducibility.
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2.6 The general form of ordinal analysis

In this section I attempt to say something general about all ordinal analyses that
have been carried out thus far. One has to bear in mind that these concern “natural”
theories. Also, to circumvent countless and rather boring counter examples, I will
only address theories that have at least the strength of PA and and always assume
the pertinent ordinal representation systems are closed under α 7→ ωα.

Before delineating the general form of an ordinal analysis, we need several defini-
tions.

Definition 2.6 Let T be a framework for formalizing a certain part of mathematics.
T should be a true theory which contains a modicum of arithmetic.

Let A be a subset of N ordered by ≺ such that A and ≺ are both definable in
the language of T . If the language of T allows for quantification over subsets of N,
like that of second order arithmetic or set theory, well-foundedness of 〈A,≺〉 will be
formally expressed by

WF(A,≺) := ∀X ⊆ N [∀u∈A(∀v ≺ u v∈X → u∈X) → ∀u∈Au∈X.] (8)

If, however, the language of T does not provide for quantification over arbitrary
subsets of N, like that of Peano arithmetic, we shall assume that it contains a new
unary predicate U. U acts like a free set variable, in that no special properties of
it will ever be assumed. We will then resort to the following formalization of well-
foundedness:

WF(A,≺) := ∀u∈A(∀v ≺ uU(v) → U(u)) → ∀u∈AU(u), (9)

where ∀v ≺ u . . . is short for ∀v(v ≺ u→ . . . ).
We also set

WO(A,≺) := LO(A,≺) ∧ WF(A,≺). (10)

If 〈A,≺〉 is well-founded, we use |≺| to signify its set-theoretic order-type. For a∈A,
the ordering ≺� a is the restriction of ≺ to {x∈A : x ≺ a}.

The ordering 〈A,≺〉 is said to be provably well-founded in T if

T ` WO(A,≺). (11)

The supremum of the provable well-orderings of T , |T |sup, is defined as follows:

|T |sup := sup
{
α : α provably recursive in T

}
(12)

where an ordinal α is said to be provably recursive in T if there is a recursive well–
ordering 〈A,≺〉 with order–type α such that

T ` WO(A,≺)

with A and ≺ being provably recursive in T . Note that, by definition, |T |sup ≤ ωCK1 ,
where ωCK1 is the supremum of the order-types of all recursive well-orderings on N.
Another characterization of ωCK1 is that it is the least admissible ordinal > ω.
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Definition 2.7 Suppose LO(A,�) and F (u) is a formula. Then TI〈A,�〉(F ) is the
formula

∀n∈A [∀x� nF (x) → F (n)] → ∀n∈AF (n). (13)

TI(A,�) is the schema consisting of TI〈A,�〉(F ) for all F .

Given a linear ordering 〈A,�〉 and α∈A let Aα = {β∈A : β � α} and �α be the
restriction of � to Aα.

In what follows, quantifiers and variables are supposed to range over the natural
numbers. When n denotes a natural number, n̄ is the canonical name in the language
under consideration which denotes that number.

Observation 2.8 Every ordinal analysis of a classical or intuitionistic theory T that
has ever appeared in the literature provides an EORS 〈A,�, . . . 〉 such that T is proof-
theoretically reducible to PA +

⋃
α∈A TI(Aᾱ,�ᾱ).

Moreover, if T is a classical theory, then T and PA +
⋃
α∈A TI(Aᾱ,�ᾱ) prove

the same arithmetic sentences, whereas if T is based on intuitionististic, then T and
HA +

⋃
α∈A TI(Aᾱ,�ᾱ) prove the same arithmetic sentences.

Furthermore, |T |sup = |�|.

Remark 2.9 There is a lot of leeway in stating the latter observation. For instance,
instead of PA one could take PRA or ERA as the base theory, and the scheme of
transfinite induction could be restricted to Σ0

1 formulae as it follows from Proposition
3.20 that PA +

⋃
α∈A TI(Aᾱ,�ᾱ) and ERA +

⋃
α∈A Σ0

1-TI(Aᾱ,�ᾱ) have the same
proof-theoretic strength, providing that A is closed under exponentiation α 7→ ωα.

Observation 2.8 lends itself to a formal definition of the notion of proof-theoretic
ordinal of a theory T . Of course, before one can go about determining the proof-
theoretic ordinal of T , one needs to be furnished with representations of ordinals. Not
surprisingly, a great deal of ordinally informative proof theory has been concerned
with developing and comparing particular ordinal representation systems. Assuming
that a sufficiently strong EORS 〈A,�, . . . 〉 has been provided, we define

|T |〈A,�,... 〉 := least ρ ∈ A. T ≡ PA +
⋃
α�ρ

TI(Aᾱ,�ᾱ) (14)

and call |T |〈A,�,... 〉, providing this ordinal exists, the proof-theoretic ordinal of T with
respect to 〈A,�, . . . 〉.

Since, in practice, the ordinal representation systems used in proof theory are
comparable, we shall frequently drop mentioning of 〈A,�, . . . 〉 and just write |T | for
|T |〈A,�,... 〉.

Note, however, that |T |〈A,�,... 〉 might not exist even if the order-type of � is bigger
than |T |sup. A simple example is provided by the theory PA + Con(PA) (where
Con(PA) expresses the consistency of PA) when we take 〈A,�, . . . 〉 to be a standard
EORS for ordinals > ε0; the reason being that PA + Con(PA) is proof-theoretically
strictly stronger than PA +

⋃
α�ε0

TI(Aᾱ,�ᾱ) but also strictly weaker than PA +⋃
α�ε0+1 TI(Aᾱ,�ᾱ). Therefore, as opposed to | · |sup, the norm | · |〈A,�,... 〉 is only

partially defined and does not induce a prewellordering on theories T with |T |sup < |�|.
The remainder of this subsection expounds on important consequences of ordinal

analyses that follow from Observation 2.8.
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Proposition 2.10 PA +
⋃
α∈A TI(Aᾱ,�ᾱ) and HA +

⋃
α∈A TI(Aᾱ,�ᾱ) prove the

same sentences in the negative fragment.

Proof : PA +
⋃
α∈A TI(Aᾱ,�ᾱ) can be interpreted in HA +

⋃
α∈A TI(Aᾱ,�ᾱ) via

the Gödel–Gentzen ¬¬-translation. Observe that for an instance of the schema of
transfinite induction we have(

∀u
[
∀x (∀y [y ≺ x→ φ(y)] → φ(x)) → φ(u)

])¬¬ ≡(
∀u

[
∀x (∀y [¬¬y ≺ x→ ¬¬φ(y)] → ¬¬φ(x)) → ¬¬φ(u)

])
.

Thus for primitive recursive ≺ the ¬¬-translation is HA equivalent to an instance of
the same schema. ut

Corollary 2.11 PA +
⋃
α∈A TI(Aᾱ,�ᾱ) and HA +

⋃
α∈A TI(Aᾱ,�ᾱ) prove the same

Π0
1 sentences.

Since many well-known and important theorems as well as conjectures from number
theory are expressible in Π0

1 form (examples: the quadratic reciprocity law, Wiles’
theorem, also known as Fermat’s conjecture, Goldbach’s conjecture, the Riemann
hypothesis), Π0

1 conservativity ensures that many mathematically important theorems
which turn out to be provable in S will be provable in T , too.

However, Π0
1 conservativity is not always a satisfactory conservation result. Some

important number-theoretic statements are Π0
2 (examples are: the twin prime con-

jecture, miniaturized versions of Kruskal’s theorem, totality of the van der Waerden
function), and in particular, formulas that express the convergence of a recursive
function for all arguments. Consider a formula ∀n ∃mP (n,m), where P (n,m) is a
primitive recursive formula expressing that “m codes a complete computation of al-
gorithm A on input n.” The ¬¬-translation of this formula is ∀n¬∀m¬P (n,m),
conveying the convergence of the algorithm A for all inputs only in a weak sense.
Fortunately, Proposition 2.11 can be improved to hold for sentences of Π0

2 form.

Proposition 2.12 PA +
⋃
α∈A TI(Aᾱ,�ᾱ) and HA +

⋃
α∈A TI(Aᾱ,�ᾱ) prove the

same Π0
2 sentences.

The missing link to get from Proposition 2.10 to Proposition 2.12 is usually pro-
vided by Markov’s Rule for primitive recursive predicates, MRPR: if ¬∀n¬Q(n) (or,
equivalently, ¬¬∃nQ(n)) is a theorem, where Q is a primitive recursive relation,
then ∃nQ(n) is a theorem. Kreisel [48] showed that MRPR holds for HA. A variety
of intuitionistic systems have since been shown to be closed under MRPR, using a
variety of complicated methods, notably Gödel’s dialectica interpretation and normal-
izability. A particularly elegant and short proof for closure under MRPR is due to
Friedman [28] and, independently, to Dragalin [18]. However, though the Friedman–
Dragalin argument works for a host of systems, it doesn’t seem to work in the case of
HA +

⋃
α∈A TI(Aᾱ,�ᾱ).

Proof of Proposition 2.12: We will give a direct proof, i.e. without using Propo-
sition 2.10. So suppose

PA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` ∀x ∃y φ(x, y),
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where φ is ∆0. Then there already exists a δ ∈ A such that

PA + TI(Aδ̄,�δ̄) ` ∀x ∃y φ(x, y). (15)

We now use the coding of infinitary PA∞ derivations presented in [99], section 4.2.2.

Let d
β

ρ pψq signify that d is the code of a PA∞ derivation with length ≤ β, cut-rank
ρ and end formula ψ. (15) implies that there is a d0 and n < ω such that

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` d0
δ·ω
n p∀x ∃y φ(x, y)q . (16)

To obtain a cut-free proof of ∀x ∃y φ(x, y) in PA∞ one needs transfinite induction
up to the ordinal ωδ·ωn , where ωγ0 := γ and ωγm+1 := ωω

γ
m . This amount of transfinite

induction is available in our background theory HA +
⋃
α∈A TI(Aᾱ,�ᾱ) as A is closed

under ξ 7→ ωξ. Also note that the cut-elimination procedure is completely effective.
Thus from (16) we obtain, for some d∗,

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` d∗
ωδ·ω

n

0
p∀x ∃y φ(x, y)q , (17)

and further

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` ∀x∃d d
ωδ·ω

n

0
p∃y φ(ẋ, y)q (18)

(where Feferman’s dot convention has been used here). Let TrΣ1 be a truth predicate
for Gödel numbers of disjunctions of Σ1 formulae (cf. [109], section 1.5, in particular
1.5.7). We claim that

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` ∀d∀β ≤ ωδ·ωn ∀Γ ⊆ Σ1

[
d

β

0
Γ → TrΣ1(

∨
Γ)

]
, (19)

where ∀Γ ⊆ Σ1 is a quantifier ranging over Gödel numbers of finite sets of Σ1 formulae
and

∨
Γ stands for the Gödel number corresponding to the disjunction of all formulae

of Γ. (19) is proved by induction on β by observing that all formulae occurring in a
cut-free PA∞ proof of a set of Σ1 formulae are Σ1 themselves and the only inferences
therein are either axioms or instances of the (∃) rule or improper instances of the ω
rule. Combining (18) and (19) we obtain

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` ∀xTrΣ1(p∃y φ(ẋ, y)q). (20)

As
HA ` ∀x [ TrΣ1(p∃y φ(ẋ, y)q) ↔ ∃y φ(x, y)]

(cf. [109], Theorem 1.5.6), we finally obtain

HA +
⋃
α∈A

TI(Aᾱ,�ᾱ) ` ∀x ∃y φ(x, y).

ut
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In section 2 we considered the ordinal |T |Con. What is the relation between |T |Con
and |T |〈A,�,... 〉? First we have to delineate the meaning of |T |Con, though. The latter
is only determined with respect to a given ordinal representation system 〈B,≺, . . . 〉.
Thus let

|T |Con = least α ∈ B. PRA + PR-TI(α) ` Con(T ).

It turns out that the two ordinals are the same when T is proof-theoretically reducible
to PA +

⋃
α∈A TI(Aᾱ,�ᾱ), A is closed under α 7→ ωα and 〈B,≺, . . . 〉 is a proper end

extension of 〈A,�, . . . 〉. The reasons are as follows:

Proposition 2.13 The consistency of PA +
⋃
α∈A TI(Aᾱ,�ᾱ) can be proved in the

theory PRA+PR-TI(A,�), where PR-TI(A,�) stands for transfinite induction along
� for primitive recursive predicates.

Hint of proof. First note that PRA + PR-TI(A,�) ` Π0
1-TI(A,�). The key to

showing this is that for each α ∈ A and each x ∈ ω we can code α and x by the
ordinal ω · α+ x which is less than ω · (α+ 1) and therefore in A.

Secondly, one has to show that an ordinal analysis of PA +
⋃
α∈A TI(Aᾱ,�ᾱ) can

be carried out in PRA + Π0
1-TI(A,�). The main tool to achieve this is to embed

PA +
⋃
α∈A TI(Aᾱ,�ᾱ) into a system of Peano arithmetic with an infinitary rule, the

so-called ω-rule, and a repetition rule, Rep, which simply repeats the premise as the
conclusion. The ω-rule allows one to infer ∀xφ(x) from the infinitely many premises
φ(0̄), φ(1̄), φ(2̄), . . . (where n̄ denotes the nth numeral); its addition accounts for the
fact that the infinitary system enjoys cut-elimination. The addition of the Rep rule
enables one to carry out a continuous cut elimination, due to Mints [59], which is a
continuous operation in the usual tree topology on prooftrees. A further pivotal step
consists in making the ω-rule more constructive by assigning codes to proofs, where
codes for applications of finitary rules contain codes for the proofs of the premises,
and codes for applications of the ω-rule contain Gödel numbers for primitive recursive
functions enumerating codes of the premises. Details can be found in [99]. The main
idea here is that we can do everything with primitive recursive proof–trees instead of
arbitrary derivations. A proof–tree is a tree, with each node labelled by: A sequent,
a rule of inference or the designation “Axiom”, two sets of formulas specifying the
set of principal and minor formulas,respectively, of that inference, and two ordinals
(length and cut–rank) such that the sequent is obtained from those immediately above
it through application of the specified rule of inference. The well-foundedness of a
proof–tree is then witnessed by the (first) ordinal “tags” which are in reverse order
of the tree order. As a result, the notion of being a (code of a) proof tree is Π0

1.
The cut elimination for infinitary proofs with finite cut rank (as presented in [99])
can be formalized in PRA + Π0

1-TI(A,�). The last step consists in recognizing that
every endformula of Π0

1 form of a cut free infinitary proof is true. The latter employs
Π0

1-TI(A,�). For details see [99]. ut

2.7 The orderings of consistency-strength and Π0
1 conserva-

tivity

Two orderings figure prominently among orderings that have been suggested for
comparing the strength of theories. These are the orderings of consistency-strength

12



(≤Con) and Π0
1 conservativity (⊆Π0

1
) (cf. [19, 113]). If one has ordinal analyses for

two theories S, T such that |S| ≤ |T |, then S ≤Con T and S ⊆Π0
1
T . The latter,

however, need not obtain if one merely knows that |S|sup ≤ |T |sup as will be shown in
the subsequent subsection.

I consider the results of this section folklore, though I have no references.

Definition 2.14 T2 is conservative over T1 for Φ, written T1 ⊆Φ T2 if

∀φ [φ ∈ Φ ∧ T1 ` φ → T2 ` φ].

Definition 2.15 Let ProofT (x, y) express that x is the code of a proof in T such that y
is the code of its endformula. We use PrT (y) for ∃xProofT (x, y). The sentence Con(T )
expressing the consistency of T can be taken as ¬PrT (p0
= 1q).

The ordering of consistency strength between theories is defined by

S ≤Con T :⇔ the consistency of T implies the consistency of S. (21)

One point needs to be attended to: Where should relative consistency be proven? If
one is actually interested in the consistency of S relative to T it would suffice to prove
the relative consistency result in T :

T ` Con(T ) → Con(S). (22)

However, the provability within T of such an implication might be rather meaningless,
as is the case for T := PA + ¬Con(PA), and the relation ≤Con wouldn’t even be
transitive.2

In practice, one shows the relative consistency result in a sound base theory like
PRA. Moreover, as Kreisel noted, if the proof of Con(T ) → Con(S) in T provides an
effective transformation, i.e.

T ` ∀n
[
ProofS(n, p0 = 1q) → ProofT (f(n), p0 = 1q)

]
, (23)

where f is primitive recursive, then

PRA + Con(T ) ` ∀n
[
ProofS(n, p0 = 1q) → ProofT (f(n), p0 = 1q)

]
(24)

(cf. [102], Theorem 5.2.1), and therefore

PRA ` Con(T ) → Con(S). (25)

Moreover, owing to a well-known metamathematical property of PRA, (25) yields
the existence of a primitive recursive function g such that

PRA ` ∀n
[
ProofS(n, p0 = 1q) → ProofT (g(n), p0 = 1q)

]
. (26)

The upshot of the above is that if the proof of Con(T ) → Con(S) is done at all nicely,
i.e. in the sense of (23), it automatically follows that the statement Con(T ) → Con(S)
can be proven in the weaker theory PRA. On the strength of the latter we adopt
(25) as our official definition of S ≤Con T .

2Let T0 := ACA, T1 := PA + ¬Con(PA), and T2 := PA + Con(PA). Then T1 ` Con(T1) →
Con(T0) simply because T1 ` ¬Con(T1). Also (cf. [102], Corollary 2.2.4) T2 ` Con(T2) → Con(T1).
But surely we don’t have T2 ` Con(T2) → Con(T0) since T0 is proof-theoretically stronger than
T2 + Con(T2).

13



Remark 2.16 By definition, T1 ≤Φ T2 implies T1 ≤Con T2 and T1 ⊆Φ T2. The
converses are by no means true. (For a trivial counterexample, take T1 := ZF,
T2 := PRA, and let Φ be the closed equations L(PRA). Then T1 ⊆Φ T2 but not
T1 ≤Φ T2, assuming T1 is consistent.)

It is a striking empirical fact that many “natural” theories, i.e. theories which
have something like an “idea” to them, are comparable with regard to consistency
strength. This has actually been proved in many cases, for theories whose ideas and
motivations have nothing at all to do with one another. A plethora of results in proof
theory and set theory seems to provide compelling evidence that ≤Con is a linear
ordering on “natural” theories. To illustrate this by way of examples from set theory,
with a few exceptions, large cardinal axioms have been shown to form a well-ordered
hierarchy when ordered as follows:

φ ≤Con ψ := ZFC + φ ≤Con ZFC + ψ,

where φ and ψ are large cardinal axioms. This has not been established for all of the
large cardinal axioms which have been proposed to date; but there is strong conviction
among set theorists that this will eventually be accomplished (cf. [19, 113]).

The mere fact of linearity of ≤Con is remarkable. But one must emphasize “nat-
ural” here, because one can construct a pair of self-referential sentences which yield
incomparable theories. We first give an example of true theories which are not ordered
by ⊆Π0

1
.

Proposition 2.17 There are true arithmetic statements ψ0 and ψ1 such that the
theories PA + ψ0 and PA + ψ1 are not comparable with regard to ⊆Π0

1
.

Proof : For existential, arithmetical formulae φ ≡ ∃xφ0(x) and ψ ≡ ∃uψ0(u) define

φ � ψ :⇔ ∃x
[
φ0(x) ∧ ∀u < x¬ψ0(u)

]
(27)

φ ≺ ψ :⇔ ∃x
[
φ0(x) ∧ ∀u ≤ x¬ψ0(u)

]
.

For T an extension of PRA, let 2T (φ) := ∃xProofT (x, pφq). By the Diagonaliza-
tion Lemma (cf. [102], Theorem 2.2.1) we find a sentence θ so that

PA ` θ ↔ 2PA(¬θ) � 2PA(θ). (28)

Let

ψ0 := ¬θ (29)

ψ1 := ¬(2PA(θ) ≺ 2PA(¬θ)).

We claim that ψ0 and ψ1 are both true. To see that ψ0 is true, note that because
of (28), θ implies PA ` PrPA(p¬θq), yielding ¬θ, so ψ0 is true. As a result we get
θ → ¬θ, which implies ¬θ and hence ψ0.

To see that ψ1 is true, note that 2PA(θ) ≺ 2PA(¬θ) implies PrPA(pθq), which
yields θ, and by the foregoing arguments also ¬θ; thus ¬(2PA(θ) ≺ 2PA(¬θ)) must
hold.

14



Let T0 := PA + ψ0 and T1 := PA + ψ1. We claim that

T0 6` ψ1, (30)

T1 6` ψ0. (31)

For a contradiction, assume T0 ` ψ1. Then PA ` ¬ψ0 ∨ ψ1, whence, using (28),

PA ` ∃x[ProofPA(x, p¬θq) ∧ ∀u < x¬ProofPA(u, θ)]

∨ ∀x[ProofPA(x, pθq) → ∃u < xProofPA(u,¬θ)].

The latter yields

PA ` ∀x [ProofPA(x, pθq) → ∃u < xProofPA(u,¬θ)]

and hence PA ` ψ1. Further, PA ` ψ1 implies PA ` PrPA(pθq) → θ, and thus PA `
θ by Löb’s theorem (cf. [102], 4.1.1). The latter yields PA ` ∃xProofPA(x, p¬θq) and
hence PA ` ¬θ. But then we have PA ` θ as well as PA ` ¬θ and PA would be
inconsistent.

To show T1 6` ψ0, we assume T1 ` ψ0, working towards a contradiction. We then
get PA ` ¬ψ1 ∨ ¬θ which yields PA ` ¬(2PA(¬θ) ≺ 2PA(θ)) and hence PA ` ¬θ
by (28). Thus we have PA ` PrPA(p¬θq). PA ` ¬θ and PA ` PrPA(p¬θq) together
imply PA ` PrPA(pθq), and hence the contradiction PA ` ¬Con(PA). ut

Next, we give an example of a pair of true theories S0, S1 which cannot be compared
with regard to ≤Con.

Proposition 2.18 There is a pair of sound theories S0, S1 which are extensions of
PRA such that

PA 6` Con(S0) → Con(S1), (32)

PA 6` Con(S1) → Con(S0).

Proof : By [103], chap. 7, Corollary 2.6, one can construct Π0
1 sentences χ, η satisfying

PRA + Con(PRA) ` ψ0 ↔ Con(PRA + χ), (33)

PRA + Con(PRA) ` ψ1 ↔ Con(PRA + η),

where ψ0, ψ1 are from Proposition 2.17 (29). Since ψ0 and ψ1 are true, Con(PRA+χ)
and Con(PRA + η) must be true, too. Therefore, as χ is Π0

1 it must be true as well,
for otherwise PRA would prove ¬χ, yielding that PRA+χ is inconsistent, colliding
with Con(PRA + χ) being true. By the same token, η is true.

Now set S0 := PRA + χ and S1 := PRA + η. Note that PA ` Con(PRA).
Thus, using (33), PA ` Con(S0) → Con(S1) would imply PA ` ψ0 → ψ1 and PA `
Con(S1) → Con(S0) would imply PA ` ψ1 → ψ0, both contradicting the results of
Proposition 2.17. ut
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2.8 The proof-theoretic ordinal of a theory and the supre-
mum of its provable recursive well-orderings

In several papers and books the calibration of |T |sup has been called ordinal analysis
of T . The definition of |T |sup has the advantage that it is not notation-sensitive. But
as to the activity named “ordinal analysis” it is left completely open what constitutes
such an analysis. One often encounters this kind of sloppy talk of ordinals in proof
theory, though it is mostly a shorthand for conveying a far more interesting result.

In this subsection the norm | · |sup will be compared with the other previously
introduced norms. It will also become clear that, in general, the mere knowledge of
|T |sup is not the goal of an ordinal analysis of T .

First, it should be mentioned that, in general, |T |sup has several equivalent char-
acterizations; though some of these hinge upon the mathematical strength of T . As
the next the result below will show, the concept |T |sup is very robust.

Proposition 2.19 (i) Suppose that for every elementary well-ordering
〈A,≺〉, whenever T ` WO(A,≺), then

T ` ∀u [A(u) → (∀v ≺ uP (v)) → P (u)] → ∀u [A(u) → P (u)]

holds for all provably recursive predicates P of T . Then

|T |sup = sup
{
α : α is provably elementary in T} (34)

= sup
{
α : α is provably Σ0

1 in T}.

Moreover, if T ` WO(A,≺) and A,≺ are provably recursive in T , then one can
find an elementary well-ordering 〈B,l〉 and a recursive function f such that
T ` WO(B,l), f is provably recursive in T , and T proves that f supplies an
order isomorphism between 〈B,l〉 and 〈A,≺〉.
Examples for (i) are the theories IΣ1, WKL0 and PA.

(ii) If T comprises ACA0, then

|T |sup = sup
{
α : α is provably arithmetic in T}. (35)

(iii) If T comprises Σ1
1 −AC0, then

|T |sup = sup
{
α : α is provably analytic in T}, (36)

where a relation on N is called analytic if it is lightface Σ1
1.

Proof : (i): Suppose T ` WO(A,�), where A and � are defined by Σ0
1 arithmetic

formulae. We shall reason informally in T . We may assume that A contains at
least two elements since there are elementary well-orderings for any finite order-type.
Without loss of generality we may also assume 0/∈A as 〈A,�〉 could be replaced by
〈{n + 1 : n∈A}, {(n + 1,m + 1) : n � m}〉. A crucial observation is now that there
are elementary R and f such that x � y ↔ ∃zR(x, y, z) and f enumerates A, i.e.
A = {f(n) : n∈N}. It is wellknown that such A and f can be chosen among the
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primitive recursive ones; the usual proof actually furnishes this stronger result (cf.
[89], p. 30).

Next, define a function h by h(0) = 0, and h(v + 1) = f(i) if i is the smallest
integer ≤ v + 1 such that f(i) 6= h(0), . . . , f(i) 6= h(v − 1), f(i) 6= h(v) and

∀u ≤ v ∃w ≤ v [h(u) 6= 0 → R(f(i), h(u), w) ∨R(h(u), f(i), w)];

let h(v + 1) = 0 if there is no such i ≤ v + 1. Clearly, h(v) ≤ Πu≤vf(u). Thus h is
a primitive recursive function bounded by an elementary function. As the auxiliary
functions entering the definition of h are elementary, h is elementary too (cf. [89],
Theorem 3.1). Obviously, h enumerates {0} ∪ A, moreover, for each a∈A there is
exactly one v such that h(v) = a.

Define the elementary relation l via

xl y iff ∃w ≤ max(x, y)R(h(x), h(y), w). (37)

We want to show that l linearly orders the elementary set B := {n : h(n) 6= 0}. If
x is in the field of l, i.e. ∃y (x l y ∨ y l x), then clearly x∈B by definition of l
and h. Conversely, if h(x) 6= 0, then h(x)∈A, and thus h(x) � a ∨ a� h(x) for some
a since A has at least two elements. Pick y such that a = h(y). By definition of h,
∃w ≤ max(x, y) [R(h(x), h(y), w) ∨ R(h(y), h(x), w)]. Hence xl y ∨ y l x.

As l is clearly irreflexive, to verify LO(B,l) it remains to be shown that l is
transitive. Assume xl y ∧ y l z. Then h(x) � h(z), and, by definition of h, if a < z
then ∃w ≤ z R(h(x), h(z), w), whereas z < x implies ∃w ≤ xR(h(x), h(z), w); thus
xl z.

To prove WF(B,l), assume

∀x∈B [∀y l xU(y) → U(x)]. (38)

We want to show ∀x∈B U(x). Define

g(v) =

{
least x. h(x) = v if v∈A
0 otherwise.

Notice that g is provably recursive in T . Let G(u) be the formula U(g(u)), and assume
v∈A and ∀u� v G(u). Then ∀yl g(v)U(y) as yl g(v) yields h(y) � h(g(v)) = v. So
(38) yields U(g(v)); thus G(v). We then get ∀v∈AG(v) employing WO(A,�). Hence
∀x∈B U(x). The upshot of the foregoing is that

T ` WO(B,l). (39)

The desired result now follows by noticing that h furnishes an order preserving map-
ping from 〈B,l〉 onto 〈A,�〉 (provably in T ), thereby yielding |l| = |�|.

(ii): We are going to draw on the notations of Lemma 2.20 below. Let � be a
binary Σ1

1 relation on N such that T ` WO(�). Let

S := {e ∈ Rec : ∃f Emb(f,≺e,�) ∧ LO(≺e)},

where Emb(f,≺e,�) stands for ∀n∀m [n ≺e m → f(n) � f(m)].
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The formula “∃f Emb(f,≺e,�)” is Σ1
1. Note that T ` S ⊆ WRec. By Lemma 2.20

below (a formalized, effective version of the Σ1
1 Bounding Principle) we can find an

integer a such that
T ` ā ∈ WRec \S,

in particular, T ` ¬∃f Emb(f,≺ā,�), and hence the Π1
1 faithfulness of T yields |�| ≤

|≺a|, thus |�| < |T |sup.

(iii): This time let � be a binary Σ1
1 relation on N. The proof is basically the

same as for (ii) though the formula “∃f Emb(f,≺e,�)” may not be strictly Σ1
1, but it

is equivalent to a Σ1
1 formula provably in T , by using the Σ1

1 axiom of choice.

Lemma 2.20 Let Rec := {e ∈ N : e is an index of a total recursive function}. With
each e ∈ Rec there is associated a relation ≺d via n ≺d m :⇔ {d}(〈n,m〉) = 0, where
〈., .〉 is a primitive recursive pairing function. Let

WRec := {e ∈ N : e ∈ Rec ∧ WO(≺e)}.

Suppose H(x) is a Σ1
1 formula such that

T ` ∀n[H(n) → x ∈ WRec].

Then there exists e ∈ Rec such that

T ` ē ∈ WRec ∧ ¬H(ē).

Proof : See [75], Lemma 1.1. ut

Theorem 2.21 Let T be a Σ1
1 axiomatizable theory.

(i) If T is Π1
1-faithful, then |T |sup < ωCK1 .

(ii) If ACA0 ⊆ T and |T |sup < ωCK1 , then T is Π1
1-faithful.

(iii) There are consistent primitive recursive theories T such that |T |sup = ωCK1 .

Proof : (i): The set X := {e ∈ Rec : T ` WO(≺ē)} is Σ1
1. Π1

1-faithfulness ensures
that X ⊆ WRec. So by Σ1

1 bounding there is a recursive well-ordering that has a bigger
order-type than all the orderings ≺e with e ∈ Rec. Consequently, |T |sup < ωCK1 .

(ii): For a contradiction, suppose T is not Π1
1-faithful. Then there is a false Π1

1-
sentence B such that T ` B. Rendering B in Π1

1 normal form, one obtains a primitive
recursive well-ordering ≺ such that ACA0 ` B ↔ WF(≺). As a result, T ` WF(≺),
but ≺ is not well-founded. Now let � be an arbitrary recursive well-ordering. Put

T := {〈〉} ∪ {〈〈x0, y0〉, . . . , 〈xi, yi〉〉 : xi � · · ·� x0; yi ≺ · · · ≺ y0; i ∈ N}

and let <T be the Kleene-Brouwer linearization of T. Since T ` WF(≺) it follows
T ` WO(<T). Since � is well-founded, <T is a well-ordering in the “real world”.
We claim that <T has at least the order-type of �. To this end, let (f(n))n∈N be an
infinite descending ≺ sequence, i.e. f(n+ 1) ≺ f(n) for all n. Put

S := {〈〉} ∪ {σ ∈ T : σ = 〈〈x0, f(0)〉, . . . , 〈xi, f(i)〉〉}.
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Being a subtree of T, the Kleene-Brouwer ordering on S, <S, is also well-founded.
Define g(x) be the <S-least σ ∈ S of the form σ ∗ 〈〈x, f(i)〉〉. Now, if y � x, then

g(y) ≤S g(x) ∗ 〈〈y, f(i+ 1)〉〉 <S g(x).

This shows that Emb(g,�, <S) and a fortiori Emb(g,�, <T), verifying the claim. As
� was an arbitrary recursive well-ordering, it follows |T |sup = ωCK1 , contradicting
|T |sup < ωCK1 .

(iii): Due to (ii), an example is provided by ACA0 + ¬Con(ACA0). ut

Remark 2.22 If one considers it worthwhile looking at theories which are not Π1
1

faithful, though consistent, one can amuse oneself by producing theories S, T such
that S and T are equiconsistent but differ with respect to their |.|sup norms. Just let
T := ACA0 and S := ACA0 + ¬Con(ACA0). Then T ≡Con S by [102], Corollary
2.2.4 and |T |sup < |S|sup by Theorem 2.21, (ii).

Sloppy talk about what constitutes an ordinal analysis of a theory T is prone to trivi-
alization. Given a faithful theory T , one easily concocts a definition of a well-ordering
whose order-type is |T |sup by simply amalgamating the provable well-orderings of T
into one big ordering.

Theorem 2.23 Let T be a primitive recursive Π1
1-faithful theory which comprises

RCA0. Then there exists a primitive recursive well-ordering � such that

|T |sup = |� |, (40)

RCA0 ` WF(�) → Con(T ); (41)

For each proper initial segment �′ of �, T ` WO(�′). (42)

The third assertion probably requires some clarification. For definiteness, by a proper
initial segment of � we mean any ordering of the form {(n,m) : n�m ∧ m� n0}
such that n0 � k for some k.

Define

φ(n) :⇔ ∃e∃m
[
n = 〈e,m〉 ∧ ProofT (m, pWO(≺ē)q)

]
;

x ≺n y :⇔ φ(n) ∧ x ≺(n)0 y;

〈n, x〉� 〈n′, y〉 :⇔ φ(n) ∧ φ(n′) ∧
[
n < n′ ∨ (n = n′ ∧ x ≺(n)0 y)

]
.

In view of its definition, � is primitive recursive and |T |sup = |�|.
To verify (41), we reason in RCA0. Assume ¬Con(T ). Then T is inconsistent

and thus proves every statement. In particular, T proves then that the ordering
0 m 1 m 2 m 3 m · · · is a well-ordering. But l is embeddable into �; thus � cannot be
a well-ordering.

As to (42), let ��r := {(n,m) : n�m ∧ m� r} be an initial segment of �. Then
there exists s such that r�s. In particular, φ(r) and T ` φ(r̄). Let 〈e0, p0〉, . . . , 〈et, pt〉
be the list of all pairs < s such that ProofT (ei, pWO(≺pi

)q). Then

T ` ∀u� r̄ [(u)0 = 〈e0, p0〉 ∨ · · · ∨ (u)0 = 〈et, pt〉];
T ` WO(≺e0) ∧ · · · ∧ WO(≺et).

19



The latter implies T ` WO(��r̄). ut
Another reason why the ordinal |T |sup, even when presented in the shape of a

natural ordinal representation system, does not convey all the information obtained
by an ordinal analysis of T is that one can find theories T1, T2 of different proof-
theoretic strength which satisfy |T1|sup = |T2|sup. More precisely, the ordinal |T |sup

usually doesn’t change when one augments T by true Σ1
1 statements.

In the main, the next result is due to Kreisel. But I couldn’t find a reference and
don’t know how Kreisel proved it.

Proposition 2.24 Let T be a primitive recursive, Π1
1-faithful theory of second order

arithmetic such that PA ⊆ T . Let � be a primitive recursive well-ordering such that
|T |sup = |�| and

PA + TI(�) ` ProofT(pFq) → F (43)

holds for all arithmetic formulae F which may contain free second order set variables
but no free number variables. Then, for any true Σ1

1 statement B,

|T |sup = |T +B|sup.

Proof : Let B := ∃X C(X) be a true Σ1
1 sentence with C(X) being arithmetic. Let

S := T +B. Note that S is also Π1
1 faithful.

We want to show that |T |sup = |S|sup. So suppose

S ` WO(≺)

for some arithmetic well-ordering ≺. Then let E(U) be the statement that U is the
graph of a function on N which maps the field of � order-preservingly onto an initial
segment (not necessarily proper) of the field of ≺. Then

S + ∃X E(X) ` TI(�).

Thus, in view of (43), one gets

S ` ∃X E(X) → ProofS(p∀X¬E(X)q) → ∀X¬E(X). (44)

The latter yields (using predicate logic)

S ` ProofS(p∀X¬E(X)q) → ∀X¬E(X), (45)

and thus, by Löb’s Theorem (cf. [102], Theorem 4.1.1),

S ` ∀X¬E(X). (46)

As a result, since S proves only true statements, ∀X¬E(X) must be true and therefore
the order-type of ≺ must be less than the order-type of �. In conclusion,

|T |sup = |S|sup.

ut

Remark 2.25 In all the examples I know, if T is a subsystem of classical second
order arithmetic for which an ordinal analysis has been carried out via an ordinal
representation system (A,�), (43) is satisfied.

If one takes, e.g. B := Con(T ), then S is of greater proof-theoretic strength than
T .
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3 Rewards of ordinal analyses and ordinal repre-

sentation systems

This section is devoted to results that have been achieved through ordinal analyses.
They fall into four groups: (1) Consistency of subsystems of classical second order
arithmetic and set theory relative to constructive theories, (2) reductions of theories
formulated as conservation theorems, (3) combinatorial independence results, and (4)
classifications of provable functions and ordinals.

3.1 Hilbert’s programme extended: Constructive consistency
proofs

A natural modification of Hilbert’s programme consists in loosening the requirement
of reduction to finitary methods by allowing reduction to constructive methods more
generally.3

The point of an extended Hilbert programme (H.P.) is that one wants a construc-
tive conception for which there is an absolute guarantee that, whatever one proves
in a sufficiently strong classical theory T , say, a fragment of second order arithmetic
or set theory, there would be an interpretation of the proof according to which the
theorem is contructively true. Moreover, one wants the theory T to be such as to
make the process of formalization of mathematics in T almost trivial, in particular
T should be sufficiently strong for all practical purposes. This is a very Hilbertian
attitude: show once and for all that non-constructive methods do not lead to false
constructive conclusions and then proceed happily on with non-constructive methods.

There are several aspects of an extended H.P. that require clarification. Let’s first
dispense with the question of how to delineate a sufficiently strong classical theory T
as this is an easy one. It was already observed by Hilbert-Bernays [37] that classical
analysis can be formalized within second order arithmetic. Further scrutiny revealed
that a small fragment is sufficient. Even without knowledge of that program carried
out under the rubric of “reverse mathematics”, it is easily seen that most of ordinary
mathematics can be formalized in ∆1

2 − CA + BI without effort (BI stands for the
principle of bar induction, i.e. the assertion that transfinite induction along a well-
founded set relation holds for arbitrary classes; this is the pendant of the foundation
axiom in set theory). A more convenient framework for formalizing mathematics is
set theory. A set theory which proves the same theorems of second order arithmetic
is the set theory KPi which is an extension of Kripke-Platek set theory via an axiom
that asserts the existence of many admissible sets, namely every set is contained in
an admissible set.

It may not be clear how ordinal analysis can contribute to an extended H.P. The

3Such a shift from the original programme is implicit in Hilbert-Bernays’ [37] apparent acceptance
of Gentzen’s consistency proof for PA under the heading “Überschreitung des bisherigen methodi-
schen Standpunktes der Beweistheorie”. The need for a modified Hilbert programme has clearly
been recognized by Gentzen (cf. [34]) and Bernays [6]: It thus became apparent that the “finite
Standpunkt” is not the only alternative to classical ways of reasoning and is not necessarily implied
by the idea of proof theory. An enlarging of the methods of proof theory was therefore suggested:
instead of reduction to finitist methods of reasoning it was required only that the arguments be of a
constructive character, allowing us to deal with more general forms of inferences.
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system of ordinal representations used in consistency proofs of stronger and stronger
theories becomes more and more complicated. To say that the consistency proof
has been carried out by transfinite induction on a certain complicated ordering tells
us nothing about what constructive principles are involved in the proof of its well-
ordering. Are we to take transfinite induction with respect to these ordinal rep-
resentation as a fundamental constructive principle? The answer could hardly be
“yes” lest only specialists on ordinal representations should be convinced. Therefore
it becomes necessary to give a detailed account of what constructive principles are
allowed in any well-ordering proof and to carry out well-ordering proofs for ordinal
representations using only these principles. The problem is thus to find some basic
constructive principles upon which a coherent system of constructive reasoning may
be built. Several frameworks for constructivism that relate to Bishop’s constructive
mathematics as theories like ZFC relate to Cantorian set theory have been proposed
by Myhill, Martin–Löf, Feferman and Aczel. Among those are Feferman’s “Explicit
Mathematics”, a constructive theory of operations and classes ([23, 24]), and Martin-
Löf’s intuitionistic type theory of [58] (the latter does not contain Russell’s infamous
reducibility axiom). Type theory is a logic free theory of constructions within which
the logical notions can be defined whereas systems of Explicit mathematics leave
the logical notions unanalysed. For this reason we consider type theory to be more
fundamental.

By employing an ordinal analysis for KPi it has been shown that KPi and con-
sequently ∆1

2 −CA+BI can be reduced to both these theories.

Theorem 3.1 (Feferman [23], Jäger [42], Jäger and Pohlers [44]) ∆1
2 −CA+BI (or

KPi) and T0 are proof-theoretically equivalent. In particular, these theories prove the
same theorems in the negative arithmetic fragment.

Theorem 3.2 (Rathjen [80]; Setzer [101]) The consistency of ∆1
2−CA+BI and KPi

is provable in Martin-Löf ’s 1984 type theory.

On the part of the intuitionists/constructivists, the following objection could be
raised against the significance of consistency proofs: even if it had been constructively
demonstrated that the classical theory T cannot lead to mutually contradictory re-
sults, the theorems of T would nevertheless be propositions without sense and their
investigation therefore an idle pastime. Well, it turns out that the constructive well-
ordering proof of the representation system used in the analysis of ∆1

2 − CA+BI
yields more than the mere consistency of the latter system. For the important class
of Π0

2 statements one obtains a conservativity result.

Theorem 3.3 (Rathjen [80]; Setzer [101])

• The soundness of the negative arithmetic fragment of ∆1
2 −CA+BI (or KPi)

is provable in Martin-Löf ’s 1984 type theory.

• Every Π0
2 statement provable in ∆1

2−CA+BI (or KPi) has a proof in Martin-
Löf ’s 1984 type theory.
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3.2 Reductions of theories formulated as conservation theo-
rems

The motivation for an extended Hilbert programme depends on the conviction that
constructive methods are, in some sense, superior. Another way to conceive of the
results mentioned in the previous subsection is to simply view them as proof-theoretic
reductions and to formulate them as conservation theorems. Ordinal analyses have
been used many times to prove that a foundationally interesting theory is in some
sense reducible to or equiconsistent with another foundationally interesting theory.
Here I’m going to list just a few examples, their selection being a very biased choice.
A plethora of further reductions can be found in [69, 43, 15, 72, 71].

1. The proofs that the theories ATR0 and KPi0 are reducible to Feferman’s system
of predicative analysis, IR, in the sense that they are conservative over IR for
Π1

1 sentences involves the ordinal Γ0. The foundational significance of these
systems is as follows. ATR0 is a subsystem of second order arithmetic that
frequently arises in reverse mathematics and is equivalent to many mathematical
statements, e.g. the open Ramsey theorem, the perfect set theorem, Ulm’s
theorem, the König duality theorem for countable bipartite graphs, etc. KPi0
is, on the one hand, an extension of Kripke-Platek set theory via an axiom
that asserts that any set is contained in an admissible set, but, on the other
hand, a weakening of Kripke-Platek set theory in that the foundation axiom is
completely missing.

The reductions can be described as contributing to a foundational program of
predicative reductionism. The reduction of ATR0 to IR was obtained in [29].
The reduction of KPi0 to IR is due to [43].

2. The study of formal theories featuring inductive definitions in both single and
iterated form was initiated by Kreisel [49]. The immediate stimulus was the
question of constructive justification of Spector’s 1961 consistency proof for
analysis via his interpretation in the so-called bar-recursive functionals of finite
type. Let ν denote a fixed ordinal in a given ordinal representation system.
Ordinal analysis has shown that the classical theory IDc

ν of ν-times iterated
arithmetical inductions is reducible to the intuitionistic theory IDi

ν(O) of ν-
times iterated constructive number classes O. The history of these results is
described in the monograph [14].4

3. T0 is Feferman’s system of Explicit mathematics. The results of Feferman [23],
Jäger [42], Jäger and Pohlers [44]) yield that ∆1

2 − CA+BI, KPi, and T0

are proof-theoretically equivalent. In particular, these theories prove the same
theorems in the negative arithmetic fragment.

No proof of the above result has been found that doesn’t use ordinal represen-
tations.

4. Inspired by work of Myhill [61] on constructive set theories, Aczel (cf. [1, 2, 3])
proposed an intuitionistic set theory, termed Constructive Zermelo-Fraenkel set

4For limit ordinals ν, Sieg (cf. [14]) obtained the reduction
⋃

α<ν IDc
α ≡

⋃
α<ν IDi

α(O) without
the use of ordinal analysis, but his approach is still proof-theoretic as it employs cut-elimination for
infinitary derivations.
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theory (CZF), that bears a close relation to Martin-Löf type theory. The novel
ideas were to replace Powerset by the (classically equivalent) Subset Collec-
tion Axiom and to discard full Comprehension while strengthening Collection
to Strong Collection. Aczel corroborated the constructiveness of CZF by in-
terpreting it in Martin-Löf’s intuitionistic type theory. A very nice aspect of
CZF is the fact that one can develop a good theory of large sets with the right
consistency strength. Since in intuitionistic set theory ∈ is not a linear ordering
on ordinals the notion of a cardinal does not play a central role. Consequently,
one talks about “ large set properties” instead of “ large cardinal properties”.
Classically though, the large cardinal axioms and the pertinent large set axiom
are of the same strength.

Up to now, the notions of inaccessible, Mahlo and 2-strong sets that classically
correspond to inaccessible, Mahlo and weakly compact cardinals, respectively,
have been investigated (cf. [85, 86, 87]). As to consistency strength and conser-
vativity the following theories have the same consistency strength and actually
prove the same Π0

2-sentences:

(i) CZF + ∀x∃I [x∈I ∧ “ I inaccessible”] and
KP + ∀α∃κ [α∈κ ∧ “κ recursively inaccessible”].

(ii) CZF + ∀x∃M [x∈M ∧ “M Mahlo”] and
KP + ∀α∃κ [α∈κ ∧ “κ recursively Mahlo ordinal”].

(iii) CZF + ∀x∃K [x∈K ∧ “K 2-strong” ] and
KP + ∀α∃κ [α∈κ ∧ “κ Π3-reflecting” ].

The proof that the intuitionistic theory has at least the strength of the classical
one requires an ordinal analysis of the classical theories as given in [73, 74,
82] and a proof of the well-foundedness of the pertinent ordinal representation
system in the intuitionistic theory.

3.3 Combinatorial independence results and new combinato-
rial principles

Since 1931, the year Gödel’s Incompleteness Theorems were published, logicians have
been looking for a strictly mathematical example of an incompleteness in first-order
Peano arithmetic, one which is mathematically simple and interesting and does not
require the numerical coding of notions from logic. The first such examples were found
early in 1977. The most elegant of these is a strengthening of the Finite Ramsey The-
orem due to Paris and Harrington (cf. [64]). The original proofs of the independence
of combinatorial statements from PA all used techniques from non-standard models
of arithmetic. Only later on alternative proofs using proof-theoretic techniques were
found. However, results from ordinal-theoretic proof theory turned out to be piv-
otal in providing independence results for stronger theories than PA, and even led
to a new combinatorial statement. The stronger theories referred to are Friedman’s
system ATR0 of arithmetical transfinite recursion and the system Π1

1 − CA based
on Π1

1-comprehension. The independent combinatorial statements have their origin
in certain embeddability questions in the theory of finite graphs. The first is a fa-
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mous theorem of Kruskal asserting that every set of finite trees has only finitely many
minimal elements.

Definition 3.4 A finite tree is a finite partially ordered set B = (B,≤) such that:

(i) B has a smallest element (called the root of B);

(ii) for each s ∈ B the set {t ∈ B : t ≤ s} is a totally ordered subset of B.

Definition 3.5 For finite trees B1 and B2, an embedding of B1 into B2 is a one-to-one
mapping f : B1 → B2 such that f(a ∧ b) = f(a) ∧ f(b) for all a, b ∈ B1, where a ∧ b
denotes the infimum of a and b.

We write B1 ≤ B2 to mean that there exists an embedding f : B1 → B2.

Theorem 3.6 (Kruskal’s theorem) For every infinite sequence of trees
(
Bk : k < ω

)
,

there exist indices i and j such that i < j < ω and Bi ≤ Bj. (In particular, there is
no infinite set of pairwise nonembeddable trees.)

Theorem 3.7 Kruskal’s Theorem is not provable in ATR0 (cf. [100]).

The proof of the above independence result exploits a connection between finite trees
and ordinal representations for ordinals < Γ0 and the fact that Γ0 is the proof-theoretic
ordinal of ATR0. Each ordinal representation a is assigned a finite tree Ba to the
effect that for two representations a and b, Ba ≤ Bb implies a ≤ b. Hence Kruskal’s
theorem implies the well-foundedness of Γ0 and is therefore not provable in ATR0.
The connection between finite trees and ordinal representations for ordinals < Γ0 was
noticed by Friedman (cf. [100]) and independently by Diana Schmidt (cf. [93]).

A hope in connection with ordinal analyses is that they lead to new combinato-
rial principles which encapsulate considerable proof-theoretic strength. Examples are
still scarce. One case where ordinal notations led to a new combinatorial result was
Friedman’s extension of Kruskal’s Theorem, EKT, which asserts that finite trees are
well-quasi-ordered under gap embeddability (see [100]). The gap condition imposed
on the embeddings is directly related to an ordinal notation system that was used
for the analysis of Π1

1 comprehension. The principle EKT played a crucial role in the
proof of the graph minor theorem of Robertson and Seymour (see [30]).

Definition 3.8 For n < ω, let Bn be the set of all finite trees with labels from n, i.e.
(B, `) ∈ Bn if B is a finite tree and ` : B → {0, . . . , n− 1}. The set Bn is quasiordered
by putting (B1, `1) ≤ (B2, `2) if there exists an embedding f : B1 → B2 with the
following properties:

1. for each b ∈ B1 we have `1(b) = `2(f(b));

2. if b is an immediate successor of a ∈ B1, then for each c ∈ B2 in the interval
f(a) < c < f(b) we have `2(c) ≥ `2(f(b)).

The condition (ii) above is called a gap condition.

Theorem 3.9 For each n < ω, Bn is a well quasi ordering (abbreviated WQO(Bn)),
i.e. there is no infinite set of pairwise nonembeddable trees.
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Theorem 3.10 ∀n < ω WQO(Bn) is not provable in Π1
1 −CA0.

The proof of Theorem 3.10 employs an ordinal representation system for the proof-
theoretic ordinal of Π1

1 − CA0. The ordinal is ψ0(Ωω) in the ordinal representation
system of [8] or θΩω0 in that of [97]. Let T (ψ0(Ωω)) denote the ordinal representation
system. The connection between < ω labelled trees and T (ψ0(Ωω)) is that ∀n <
ω WQO(Bn) implies the wellfoundedness of T (ψ0(Ωω)) on the basis of ACA0. The
connection is even closer in that the gap condition imposed on the embeddings between
trees is actually gleaned from the ordering of the terms in T (ψ0(Ωω)). If one views
these terms as labelled trees, then the gap condition is exactly what one needs to
ensure that an embedding of two such trees implies that the ordinal corresponding to
the first tree is less than the ordinal corresponding to the second tree.

It is also for that reason that criticism had been levelled against the principle
EKT for being too contrived or too metamathematical. But this was superseded by
the crucial role that EKT played in the proof of the graph minor theorem of Robertson
and Seymour (see [30]).

As to the importance attributed to the graph minor theorem, I quote from a book
on Graph Theory [17], p. 249.

Our goal [. . . ] is a single theorem, one which dwarfs any other result in
graph theory and may doubtless be counted among the deepest theorems
that mathematics has to offer: in every infinite set of graphs there are two
such that one is a minor of the other. This minor theorem, inconspicuous
though it may look at first glance, has made a fundamental impact both
outside graph theory and within. Its proof, due to Neil Robertson and Paul
Seymour, takes well over 500 pages.

Definition 3.11 Let e = xy be an edge of a graph G = (V,E), where V and E
denote its vertex and edge set, respectively. By G/e we denote the graph obtained
from G by contracting the edge e into a new vertex ve, which becomes adjacent to all
the former neighbours of x and of y. Formally, G/e is a graph (V ′, E ′) with vertex set
V ′ := (V \ {x, y}) ∪ {ve} (where ve is the “new” vertex, i.e. v /∈ V ∪ E) and edge set

E ′ :=
{
vw ∈ E|{v, w} ∩ {x, y} = ∅

}
∪

{
vew|xw ∈ E \ {e} ∨ yw ∈ E \ {e}

}
.

If X is obtained from Y by first deleting some vertices and edges, and then contracting
some further edges, X is said to be a minor of Y . In point of fact, the order in
which deletions and contractions are applied is immaterial as any graph obtained
from another by repeated deletions and contractions in any order is its minor.

Theorem 3.12 (Robertson and Seymour 1986-1997) If G0, G1, G2, . . . is an infinite
sequence of finite graphs, then there exist i < j so that Gi is isomorphic to a minor
of Gj.

Corollary 3.13 (i) (Vázsonyi’s conjecture) If all the Gk are trivalent, then there
exist i < j so that Gi is embeddable into Gj.

(ii) (Wagner’s conjecture) For any 2-manifold M there are only finitely many graphs
which are not embeddable in M and are minimal with this property.
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Theorem 3.14 (Friedman, Robertson, Seymour [30])

(i) GMT implies EKT within, say, RCA0.

(ii) GMT is not provable in Π1
1 −CA0.

A further independence result that ensues from ordinal analysis is due to Buchholz
[9]. It concerns an extension of the hydra game of Kirby and Paris. It is shown in [9]
that the assertion that Hercules has a winning strategy in this game is not provable
in the theory Π1

1 −CA + BI.

3.4 Classifications of provable functions and ordinals

An apt leitmotif for this subsection is provided by Kreisel’s question (cf. [48]): “What
more do we know if we have proved a theorem by restricted means than if we merely
know that it is true?”

3.4.1 Provable recursive functions

In the case of PA an answer to the foregoing question was provided by Kreisel in
[47], where he characterized the provably recursive functions of PA as those which
are α-recursive for some α < ε0. However, there is nothing special about PA when
it comes to extracting the latter kind of information. Indeed, it is a general fact
that an ordinal analysis of a theory T yields, as a by-product, a characterization of
the provably recursive functions of T . As stated in section 2, an ordinal analysis
of T via an ordinal representation system 〈A,�, . . . 〉 provides a reduction of T to
PA+

⋃
α∈A TI(Aᾱ,�ᾱ) and further ensures Π0

2-conservativity. On the strength of the
latter, it suffices to characterize the provably recursive functions of

S := PA +
⋃
α∈A

TI(Aᾱ,�ᾱ)

for EORSs 〈A,�, . . . 〉.

Definition 3.15 Let α ∈ A such that 0 � α. A number-theoretic function f is
called α-recursive if it can be generated by the usual schemes for generating primitive
recursive functions plus the following scheme:

f(m,~n) =

{
h(m,~n, f(θ(m,~n), ~n)) if 0 �m� α
g(m,~n) otherwise,

where g, h, θ are α-recursive and θ satisfies θ(β, ~x) � β whenever 0 � β � α.

Theorem 3.16 The provably recursive functions of PA +
⋃
α∈A TI(Aᾱ,�ᾱ) are ex-

cactly the recursive functions which are α-recursive for some α ∈ A.

The technical tool for achieving this characterization is to embed PA +⋃
α∈A TI(Aᾱ,�ᾱ) into a system of Peano arithmetic with an infinitary rule, the so-

called ω-rule, and a repetition rule, Rep, which simply repeats the premise as the
conclusion. The ω-rule allows one to infer ∀xφ(x) from the infinitely many premises

27



φ(0̄), φ(1̄), φ(2̄), . . . (where n̄ denotes the nth numeral); its addition accounts for the
fact that the infinitary system enjoys cut-elimination. The addition of the Rep rule
enables one to carry out a continuous cut elimination, due to Mints [59], which is a
continous operation in the usual tree topology on prooftrees. A further pivotal step
consists in making the ω-rule more constructive by assigning codes to proofs, where
codes for applications of finitary rules contain codes for the proofs of the premises,
and codes for applications of the ω-rule contain Gödel numbers for partial functions
enumerating codes of the premises. The aforementioned enumerating functions can
be required to be partial recursive, making the proof trees recursive, or even primitive
recursive in the presence of the rule Rep which enables one to stretch recursive trees
into primitive recursive trees. Theorem 3.16 can be extracted from Kreisel-Mints-
Simpson [52], Lopez-Escobar [53], or Schwichtenberg [99] and was certainly known to
these authors. A variant of the characterization of Theorem 3.16 is given in Friedman-
Sheard [32], where the provable functions of PA +

⋃
α∈A TI(Aᾱ,�ᾱ) are classified as

the descent recursive functions over A. But before discussing this and related results,
I’d like to draw attention to a more recent approach which has the great advantage
over the previous one that one need not bother with codes for infinite derivations. In
this approach one adds an extra feature to infinite derivations by which one can exert
a greater control on derivations so as to be able to directly read off numerical bounds
from cut free proofs of Σ0

1 statements. This has been carried out by Buchholz-Wainer
[11] for the special case of PA. In much greater generality and flexibility this approach
has been developed by Weiermann [112].

The remainder of this section presents further results about theories of the shape
PA +

⋃
α∈A TI(Aᾱ,�ᾱ), thereby providing more information that can be extracted

from ordinal analyses. Propositions 3.19, 3.20, and 3.23 are due to Friedman-Sheard
[32].

Definition 3.17 For each α∈A, ERWF(�, ᾱ) is the schema

∀~x∃y[f(~x, y) E f(~x, y + 1) ∨ f(~x, y)/∈A ∨ ᾱ E f(~x, y)]

for each (definition of an) elementary function f .
ERWF(�) is the schema

∀~x∃y[f(~x, y) E f(~x, y + 1) ∨ f(~x, y)/∈A]

for each elementary function f .
The schemata PRWF(�, ᾱ) and PRWF(�) are defined identically, except that f

ranges over the primitive recursive functions.

Definition 3.18 DRA〈A,�〉 (Descent Recursive Arithmetic) is the theory whose ax-
ioms are ERA +

⋃
α∈A ERWF(�, ᾱ).

DRA(�+) is the theory whose axioms are ERA + ERWF(�).

The difference is that DRA(�) asserts only the non-existence of elementary infinitely
descending sequences below each α∈A, where α is given at the meta-level.

Combined with 2.8 the latter result leads to a neat characterization of the provably
recursive functions of T due to the following observation:
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Proposition 3.19 ([32]) The provably recursive functions of DRA〈A,�〉 are all func-
tions f of the form

f(~m) = g(~m, least n.h(~m, n) E h(~m, n+ 1)) (47)

where g and h are elementary functions and ERA ` ∀~xy h(~x, y)∈Aᾱ for some α∈A.

The above class of recursive functions will be referred to as the descent recursive
functions over A.

Proposition 3.20 ([32, 4.4]) DRA〈A,�〉 and PA +
⋃
α∈A TI(Aᾱ,�ᾱ) prove the same

Π0
2 sentences.

From 2.8 and 3.20 we get:

Observation 3.21 Suppose an ordinal analysis of the formal system T has been at-
tained using an EORS 〈A,�, . . . 〉. Then the provably recursive functions of T are the
descent recursive functions over A.

We shall list some complementary results.

Definition 3.22 If T is a theory, the 1-consistency of T is the schema

∀u[PrT (pF (u̇)q) → F (u)]

for Σ0
1 formulae F (u) with one free variable u.

Proposition 3.23 ([32, 4.5]) The following are equivalent over PRA:

(i) 1-consistency of PA +
⋃
α∈A TI(Aᾱ,�ᾱ)

(ii) PRWF(�+)

(ii) ERWF(�+).

Observation 3.24 Again, let T be a theory for which an ordinal analysis has been
carried out via 〈A,�〉. Then the following are equivalent over PRA:

(i) 1-consistency of T

(ii) PRWF(�+)

(ii) ERWF(�+).

A characterization of the provably recursive functions of a formal system T as the
α-recursive functions for α ∈ A or the descent recursive functions over A is notation-
sensitive. None the less, it is sometimes possible to extract further notation-free
information, in particular independence results that are not couched in terms of a given
ordinal representation system 〈A,�, . . . 〉. Usually, though, to obtain such results one
needs to be furnished with a specific well-structured hierarchy (Fα)α∈A of functions
such that every provable function of T is majorized by a function in the hierarchy.
An example is Kirby and Paris’ result on the unprovability of the termination of all
Goodstein sequences in PA. A proof-theoretic proof of this result (cf. [11, 108])
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employs the fact that for every provable recursive functions of PA there is a function
Hα for some α < ε0 that majorizes it. Here Hα is the αth function in the so-called
Hardy hierarchy. What complicates matters is that the definition of the functions Hα

hinges upon a particular assignment of fundamental sequences to limit ordinals. It
appears that only “natural” assignments of fundamental sequences, which take into
account their algebraic properties rather than their codes, lead to function hierarchies
that can be used for combinatorial independence results. A general discussion about
different hierarchies (Fα)α∈A and their relations can be found in [13].

3.4.2 Provable set functions and ordinals

The extraction of classifications of provable functions from ordinal analyses is not
confined to recursive functions on natural numbers. In the case of fragments of second
order arithmetic, one may also classify the provable hyperarithmetical as well as the
provable ∆1

2 functions on N. In the case of set theories one may classify several kinds
of provable set functions.

In the following we will be concerned with norms that can be assigned to set
theories. In general, they can also be extracted from an ordinal analysis of a set theory
T . Among other results, they lead to a classification of the provable set functions of
T .

The first of these norms will be denoted |T |E, where the superscript E signifies
E-recursion, also termed set recursion. E-recursion theory extends the notion of
computation from the natural numbers to arbitrary sets. For details see [90].

Definition 3.25 The intent is to assign meaning to {e}(x) for every set x via an
appropriate notion of computation. E-recursion is defined by the following schemes:

1. e = 〈1, n, i〉,
{e}(x1, . . . , xn) = xi.

2. e = 〈2, n, i, j〉,
{e}(x1, . . . , xn) = xi\xj.

3. e = 〈3, n, i, j〉,
{e}(x1, . . . , xn) = {xi, xj}.

4. e = 〈4, n, c〉,
{e}(x1, . . . , xn) =

⋃
{{c}(y, x2, . . . , xn) : y∈x1}.

The left side is not defined unless {c}(y, x2, . . . , xn) is defined for all y∈x1.

5. e = 〈5, n,m, e′, e1, . . . , en〉,
{e}(x1, . . . , xn) ' {e′}({e1}(x1, . . . , xn), . . . , {em}(x1, . . . , xn)).

6. e = 〈6, n,m〉,
{e}(e1, x1, . . . , xn, y1, . . . , ym) ' {e1}(x1, . . . , xn).

' is Kleene’s symbol for strong equality. If g and f are partial functions, then
f(x) ' g(x) iff neither f(x) nor g(x) is defined, or f(x) and g(x) are defined and
equal.

30



Recall that Lα, the αth level of Gödel’s constructible hierarchy L, is defined by L0 = ∅,
Lβ+1 =

{
X : X ⊆ Lβ; X definable over 〈Lβ,∈〉

}
and Lλ =

⋃
{Lβ : β < λ} for limits

λ. So any element of L of level α is definable from elements of L with levels < α and
Lα.

Definition 3.26 For a collection of formulae (in the language of set theory), F , we
say that Lα is an F-model of T if for all B ∈ F , whenever T ` B, then Lα |= B. Let

|T |F := min{α : Lα is an F -model of T}.

Definition 3.27 The next notions are due to A. Schlüter [91].

|T |EΣ1
:= min{α : for all e ∈ ω, T ` {e}(ω) ↓ implies {e}(ω) ∈ Lα}.

|T |ΠE
2

:=

min{α > ω : for all e ∈ ω, T ` ∀x {e}(x) ↓ implies ∀x∈Lα{e}(x) ∈ Lα}.

Definition 3.28 Let F be a collection of sentences. A set theory T is said to be
F-sound if for every F theorem φ of T , L |= φ holds.

For a collection of formulae F , let F(Lα) consist of all formulae ALα with A ∈ F .
The system PRST (for Primitive Recursive Set Theory) is formulated in the lan-

guage of set theory augmented by symbols for all primitive recursive set functions.
The axioms of PRST are Extensionality, Pair, Union, Infinity, ∆0-Separation, the
Foundation Axiom (i.e. x 6= ∅ → (∃y∈x)(∀z∈y) z /∈x) and the defining equations for
the primitive recursive set functions.

In the following we shall assume that all set theories contain PRST either directly
or via interpretation.

Proposition 3.29 Suppose T is Π2 sound and comprises ∆0-collection. Furthermore,
suppose that T `B implies T ` ∃α∃x(x=Lα ∧ Bx) for all Σ1-sentences B. If T has
a Σ1-model then T has a Π2-model and

|T |Σ1 = |T |Π2 . (48)

Proof : [76]. Theorem 2.1. ut

Proposition 3.30 If T is a Π2 sound theory, then

|T |EΣ1
= |T |EΠ2

. (49)

Recall that ωCK1 stands for the least admissible ordinal > ω. If, in addition, T proves
the existence of ωCK1 , then

|T |Σ1(L(ωCK
1 )) = |T |Π2(L(ωCK

1 )). (50)

Proof : (50) is an immediate consequence of the proof of [76], Theorem 2.1 and a
slight modification of the latter proof yields (49). (49) is stated and proved in [91],
6.14. ut
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Theorem 3.31 If T is Π2-sound and T ` ∀x ∃y [x∈y ∧ “y is an admissible set”],
then

|T |sup = |T |EΣ1
= |T |EΠ2

= |T |Σ1(L(ωCK
1 )) = |T |Π2(L(ωCK

1 )).

Proof : A detailed proof of |T |EΣ1
= |T |Σ1(L(ωCK

1 )) can be found in [91], Satz 6.15. The
equality |T |sup = |T |Σ1(L(ωCK

1 )) also follows from the proof of [91], Satz 6.15, but has
been observed previously (cf. [74], Theorem 7.14). ut

Definition 3.32 Another notion that is closely related to the the norm |T |Σ1 is the
notion of good Σ1-definition from admissible set theory (see [5], II.5.13). Given a
set theory T , we say that an ordinal α has a good Σ1-definition in T if there is a
Σ1-formula φ(u) such that

L |= φ[α] and T ` ∃!xφ(x).

Let
spΣ1

(T ) := {α : α has a good Σ1 definition in T}.

One obviously has sup(spΣ1
(T )) = |T |Σ1 . In many cases the set spΣ1

(T ) bears in-
teresting connections to the ordinals of the representation system that has been used
to analyze T . Ordinal representation systems that have been developed via a de-
tour through large cardinals allow for an alternative interpretation wherein the large
cardinals are replaced by their recursively large counterparts. The latter interpreta-
tion gives rise to a canonical interpretation of the ordinal terms of the representation
system in spΣ1

(T ). In general, however, the ordinals of spΣ1
(T ) stemming from the

ordinal representation form a proper subset of spΣ1
(T ) with many ‘holes’. It would

be very desirable to find a ‘natural’ property which could distinguish the ordinals
of the representation system within spΣ1

(T ) so as to illuminate their naturalness. I
consider this to be one of the most important problems in the area of strong ordinal
representation systems. A more thorough discussion will follow in section 4.

4 Examples of ordinal analyses

In this last section, I’m going to sketch the ordinal analyses of two systems of set
theory which are intended to illustrate the main ideas and techniques used in ordinal
analysis. Some attempts will be made to explain the role of large cardinals that appear
in the definition procedures of so-called collapsing functions which then give rise to
strong ordinal representation systems.

4.1 A brief history of ordinal analyses

To set the stage for the following, a very brief history of ordinal-theoretic proof theory
since Gentzen reads as follows: In the 1950’s proof theory flourished in the hands of
Schütte: in [94] he introduced an infinitary system for first order number theory with
the so-called ω-rule, which had already been proposed by Hilbert [36]. Ordinals were
assigned as lengths to derivations and via cut-elimination he re-obtained Gentzen’s
ordinal analysis for number theory in a particularly transparent way. Further, Schütte
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extended his approach to systems of ramified analysis and brought this technique to
perfection in his monograph “Beweistheorie” [95]. Independently, in 1964 Feferman
[21] and Schütte [96], [97] determined the ordinal bound Γ0 for theories of autonomous
ramified progressions.

A major breakthrough was made by Takeuti in 1967, who for the first time ob-
tained an ordinal analysis of a strong fragment of second order arithmetic. In [106]
he gave an ordinal analysis of Π1

1 comprehension, extended in 1973 to ∆1
2 comprehen-

sion in [107] jointly with Yasugi. For this Takeuti returned to Gentzen’s method of
assigning ordinals (ordinal diagrams, to be precise) to purported derivations of the
empty sequent (inconsistency).

The next wave of results, which concerned theories of iterated inductive definitions,
were obtained by Buchholz, Pohlers, and Sieg in the late 1970’s (see [14]). Takeuti’s
methods of reducing derivations of the empty sequent (“the inconsistency”) were
extremely difficult to follow, and therefore a more perspicuous treatment was to be
hoped for. Since the use of the infinitary ω-rule had greatly facilitated the ordinal
analysis of number theory, new infinitary rules were sought. In 1977 (see [7]) Buchholz
introduced such rules, dubbed Ω-rules to stress the analogy. They led to a proof-
theoretic treatment of a wide variety of systems, as exemplified in the monograph
[15] by Buchholz and Schütte. Yet simpler infinitary rules were put forward a few
years later by Pohlers, leading to the method of local predicativity, which proved to
be a very versatile tool (see [66, 67, 68]). With the work of Jäger and Pohlers (see
[40, 41, 44]) the forum of ordinal analysis then switched from the realm of second-order
arithmetic to set theory, shaping what is now called admissible proof theory, after the
models of Kripke-Platek set theory, KP. Their work culminated in the analysis of the
system with ∆1

2 comprehension plus BI [44]. In essence, admissible proof theory is
a gathering of cut-elimination techniques for infinitary calculi of ramified set theory
with Σ and/or Π2 reflection rules5 that lend itself to ordinal analyses of theories of the
form KP+ “there are x many admissibles” or KP+ “there are many admissibles”.
By way of illustration, the subsystem of analysis with ∆1

2 comprehension and bar
induction can be couched in such terms, for it is naturally interpretable in the set
theory KPi := KP + ∀y∃z(y∈z ∧ z is admissible) (cf. [44]).

After an intermediate step [74], which dealt with a set theory KPM that formalizes
a recursively Mahlo universe, a major step beyond admissible proof theory was taken
in [82]. That paper featured ordinal analyses of extensions of KP by Πn reflection.
A generalization of the methods of [82] underlies the treatment of Π1

2 −CA sketched
in [83].

4.2 An ordinal analysis of Kripke-Platek set theory

Until the late 70s the systems treated by ordinal analysis were either fragments of
second order arithmetic or theories of iterated inductive definitions. A direct proof-
theoretic treatment of systems of set theory was pioneered by Jäger (cf. [40, 41]).
A first impression of ordinal analysis will be given by way of the example of Kripke-
Platek set theory.

5Recall that the salient feature of admissible sets is that they are models of ∆0 collection and
that ∆0 collection is equivalent to Σ reflection on the basis of the other axioms of KP (see [5]).
Furthermore, admissible sets of the form Lα also satisfy Π2 reflection.
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4.2.1 The system KP

Though considerably weaker than ZF, a great deal of set theory requires only the
axioms of KP. The axioms of KP are:6

Extensionality: a = b→ [F (a) ↔ F (b)] for all formulas F .

Foundation: ∃xG(x) → ∃x[G(x) ∧ (∀y∈x)¬G(y)]

Pair: ∃x (x = {a, b}).
Union: ∃x (x =

⋃
a).

Infinity: ∃x
[
x 6= ∅ ∧ (∀y∈x)(∃z∈x)(y∈z)

]
.7

∆0 Separation: ∃x
(
x = {y∈a : F (y)}

)
8 for all ∆0–formulas F

in which x does not occur free.

∆0 Collection: (∀x∈a)∃yG(x, y) → ∃z(∀x∈a)(∃y∈z)G(x, y)
for all ∆0–formulas G.

By a ∆0 formula we mean a formula of set theory in which all the quantifiers appear
restricted, that is have one of the forms (∀x∈b) or (∃x∈b).

KP arises from ZF by completely omitting the power set axiom and restricting
separation and collection to absolute predicates (cf. Barwise [1975]), i.e. ∆0 formulas.
These alterations are suggested by the informal notion of ‘predicative’.

4.2.2 An ordinal representation system for the Bachmann-Howard ordi-
nal

This section introduces an ordinal representation system which encapsulates the strength
of KP.

Definition 4.1 The Veblen-function ϕ figures prominently in elementary proof the-
ory (cf. [22, 70, 98]). It is defined by transfinite recursion on α by letting ϕ0(ξ) := ωξ

and, for α > 0, ϕα be the function that enumerates the class of ordinals

{γ : ∀ξ < α [ϕξ(γ) = γ]}.

We shall write ϕαβ instead of ϕα(β) . Let Γα be the αth ordinal ρ > 0 such that for
all β, γ < ρ, ϕβγ < ρ

Corollary 4.2 (i) ϕ0β = ωβ.

(ii) ξ, η < ϕαβ =⇒ ξ + η < ϕαβ.

(iii) ξ < ζ =⇒ ϕαξ < ϕαζ.

6For technical convenience,∈will be taken to be the only predicate symbol of the language of set
theory. This does no harm, since equality can be defined by a = b :⇔ (∀x∈a)(x∈b) ∧ (∀x∈b)(x∈a),
provided that we state extensionality in a slightly different form than usually.

7This contrasts with Barwise [1975] where Infinity is not included in KP.
8x = {y∈a : F (y)} stands for the ∆0–formula (∀y∈x)[y∈a ∧ F (y)] ∧ (∀y∈a)[F (y) → y∈x].
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(iv) α < β =⇒ ϕα(ϕβξ) = ϕβξ.

The least ordinal (> 0) closed under the function ϕ is called Γ0. The proof-theoretic
ordinal of KP, however, is bigger than Γ0 and we need another function to obtain a
sufficiently large ordinal representation system.

Definition 4.3 Let Ω be a “big” ordinal. By recursion on α we define sets CΩ(α, β)
and the ordinal ψΩ(α) as follows:

CΩ(α, β) =


closure of β ∪ {0,Ω}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψΩ(ξ))ξ<α

(51)

ψΩ(α) ' min{ρ < Ω : CΩ(α, ρ) ∩ Ω = ρ }. (52)

Note that if ρ = ψΩ(α), then ψΩ(α) < Ω and [ρ,Ω) ∩ CΩ(α, ρ) = ∅, thus the order-
type of the ordinals below Ω which belong to the Skolem hull CΩ(α, ρ) is ρ . In more
pictorial terms, ρ is the αth collapse of Ω.

Lemma 4.4 ψΩ(α) is always defined; in particular ψΩ(α) < Ω.

Proof : The claim is actually not a definitive statement as I haven’t yet said what
largeness properties Ω has to satisfy. In the proof below, we assume Ω := ℵ1, i.e. Ω
is the first uncountable cardinal.

Observe first that for a limit ordinal λ,

CΩ(α, λ) =
⋃
ξ<λ

CΩ(α, ξ)

since the right hand side is easily shown to be closed under the clauses that define
CΩ(α, λ). Now define

η0 = supCΩ(α, 0) ∩ Ω (53)

ηn+1 = supCΩ(α, ηn) ∩ Ω

η∗ = sup
n<ω

ηn.

Since for η < Ω the cardinality of CΩ(α, η) is the same as that of max(η, ω) and
therefore less than Ω, the regularity of Ω implies that η0 < Ω. By repetition of this
argument one obtains ηn < Ω, and consequently η∗ < Ω. The definition of η∗ then
ensures

CΩ(α, η∗) ∩ Ω =
⋃
n

CΩ(α, ηn) ∩ Ω = η∗ < Ω.

Therefore, ψΩ(α) < Ω. ut
Let εΩ+1 be the least ordinal α > Ω such that ωα = α. The next definition singles

out a subset T (Ω) of CΩ(εΩ+1, 0) which gives rise to an ordinal representation system,
i.e., there is an elementary ordinal representation system 〈OR,�, <̂, ψ̂, . . . 〉, so that

〈T (Ω), <,<, ψ, . . . 〉 ∼= 〈OR,�, <̂, ψ̂, . . . 〉. (54)

“. . . ” is supposed to indicate that more structure carries over to the ordinal represen-
tation system.
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Definition 4.5 T (Ω) is defined inductively as follows:

1. 0,Ω ∈ T (Ω).

2. If α1, . . . , αn ∈ T (Ω) and ωα1 +· · ·+ωαn > α1 ≥ . . . ≥ αn, then ωα1 +· · ·+ωαn ∈
T (Ω).

3. If α ∈ T (Ω) and α ∈ CΩ(α, ψΩ(α)), then ψΩ(α) ∈ T (Ω).

The side condition in 4.5.2 is easily explained by the desire to have unique representa-
tions in T (Ω). The requirement α ∈ CΩ(α, ψΩ(α)) in 4.5.3 also serves the purpose of
unique representations (and more) but is probably a bit harder to explain. The idea
here is that from ψΩ(α) one should be able to retrieve the stage (namely α) where it
was generated. This is reflected by α ∈ CΩ(α, ψΩ(α)).

It can be shown that the foregoing definition of T (Ω) is deterministic, that is to say
every ordinal in T (Ω) is generated by the inductive clauses of 4.5 in exactly one way.
As a result, every γ ∈ T (Ω) has a unique representation in terms of symbols for 0,Ω
and function symbols for +, (α 7→ ωα), (α 7→ ψΩ(α)). Thus, by taking some primitive
recursive (injective) coding function d· · · e on finite sequences of natural numbers, we
can code T (Ω) as a set of natural numbers as follows:

`(α) =


d0, 0e if α = 0
d1, 0e if α = Ω
d2, `(α1), · · · , `(αn)e if α = ωα1 + · · ·+ ωαn

d3, `(β), `(Ω)e if α = ψΩ(β),

where the distinction by cases refers to the unique representation of 4.5. With the aid
of `, the ordinal representation system of (54) can be defined by letting OR be the
image of ` and setting � := {(`(γ), `(δ)) : γ < δ ∧ δ, γ ∈ T (Ω)} etc. However, for a
proof that this definition of 〈OR,�, <̂, ψ̂, . . . 〉 in point of fact furnishes an elementary
ordinal representation system, we have to refer to the literature (cf. [8, 12, 82]).

4.2.3 A reminder: Ordinal analysis of PA à la Schütte

It is well known that the axioms of Peano Arithmetic, PA, can be derived in a sequent
calculus, PAω, augmented by an infinitary rule, the so–called ω–rule9

Γ, A(n̄) for all n

Γ,∀xA(x)
.

An ordinal analysis for PA is then attained as follows:

• Each PA–proof can be “unfolded” into a PAω–proof of the same sequent.

• Each such PAω–proof can be transformed into a cut–free PAω–proof of the same
sequent of length < ε0.

In order to obtain a similar result for set theories like KP, we have to work a bit
harder. Guided by the ordinal analysis of PA, we would like to invent an infinitary
rule which, when added to KP, enables us to eliminate cuts. As opposed to the

9n̄ stands for the nth numeral
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natural numbers, it is not clear how to bestow a canonical name to each element of
the set–theoretic universe. However, within the confines of the constructible universe,
which is made from the ordinals, it is pretty obvious how to “name” sets once we have
names for ordinals at our disposal.

4.2.4 The language of RSΩ

The problem of “naming” sets will be solved by erecting a formal constructible hierar-
chy using the ordinals from T (Ω). Henceforth, we shall restrict ourselves to ordinals
from T (Ω).

Definition 4.6 We adopt a language of set theory, L, which has only the predicate
symbol ∈. The atomic formulae of L are those of either form (a∈b) or ¬(a∈b). The L–
formulae are obtained from atomic ones by closing off under ∧,∨, (∃x∈a), (∀x∈a),∃x,
and ∀x.

Definition 4.7 The RSΩ–terms and their levels are generated as follows.

1. For each α < Ω, Lα is an RSΩ–term of level α.

2. The formal expression [x∈Lα : F (x,~s)Lα ] is an RSΩ–term of level α if F (a,~b) is
an L–formula (whose free variables are among the indicated) and ~s ≡ s1, · · · , sn
are RSΩ–terms with levels < α. F (x,~s)Lα results from F (x,~s) by restricting all
unbounded quantifiers to Lα.

We shall denote the level of an RSΩ–term t by | t |; t∈T (α) stands for | t | < α and
t∈T for t∈T (Ω).

The RSΩ–formulae are the expressions of the form F (~s), where F (~a) is an L–
formula and ~s ≡ s1, . . . , sn∈T .

For technical convenience, we let ¬A be the formula which arises from A by (i)
putting ¬ in front of each atomic formula, (ii) replacing ∧,∨, (∀x ∈ a), (∃x ∈ a) by
∨,∧, (∃x∈a), (∀x∈a), respectively, and (iii) dropping double negations.

Definition 4.8 We use the relation ≡ to mean syntactical identity. For terms s, t
with | s | < | t | we set

s
◦
∈t ≡

{
B(s) if t ≡ [x∈Lβ : B(x)]
Trues if t ≡ Lβ

where Trues is a true formula, say s /∈L0.

Observe that s∈t and s
◦
∈t have the same truth value under the standard interpretation

in the constructible hierarchy.

4.2.5 The rules of LRS
Having created names for a segment of the constructible universe, we can introduce
infinitary rules analogous to the the ω-rule.

Let A,B,C, . . . , F (t), G(t), . . . range over RSΩ–formulae. We denote by upper
case Greek letters Γ,∆,Λ, . . . finite sets of RSΩ–formulae. The intended meaning of
Γ = {A1, · · · , An} is the disjunction A1 ∨ · · · ∨ An. Γ, A stands for Γ ∪ {A} etc.. We
also use the shorthands r 6= s := ¬(r = s) and r /∈ t := ¬(r∈ t).
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Definition 4.9 The rules of RSΩ are:

(∧)
Γ, A Γ, A′

Γ, A ∧ A′

(∨)
Γ, Ai

Γ, A0 ∨ A1
if i = 0 or i = 1

(b∀) · · ·Γ, s
◦
∈t→ F (s) · · · (s∈T (| t |))

Γ, (∀x∈ t)F (x)

(b∃) Γ, s
◦
∈t ∧ F (s)

Γ, (∃x∈ t)F (x)
if s∈T (| t |)

(∀) · · ·Γ, F (s) · · · (s∈T )
Γ,∀xF (x)

(∃) Γ, F (s)
Γ,∃xF (x)

if s∈T

(6∈)
· · ·Γ, s

◦
∈t→ r 6= s · · · · · · (s∈T (| t |))

Γ, r 6∈ t

(∈) Γ, s
◦
∈t ∧ r = s
Γ, r∈ t if s∈T (| t |)

(Cut)
Γ, A Γ,¬ A

Γ

(RefΣ(Ω))
Γ, A

Γ,∃z Az if A is a Σ-formula,

where a formula is said to be Σ if all unbounded quantifiers are existential. Az results
from A by restricting all unbounded quantifiers to z.

4.2.6 H–controlled derivations

If we dropped the rule (RefΣ(Ω)) from RSΩ, the remaining calculus would enjoy full
cut elimination owing to the symmetry of the pairs of rules 〈 (∧), (∨) 〉, 〈 (∀), (∃) 〉,
〈 (6∈), (∈) 〉. However, partial cut elimination for RSΩ can be attained by delimiting a
collection of derivations of a very uniform kind. Fortunately, Buchholz has provided us
with a very elegant and flexible setting for describing uniformity in infinitary proofs,
called operator controlled derivations (see [10]).

Definition 4.10 Let P (ON) = {X : X is a set of ordinals}. A class function H :
P (ON) → P (ON) will be called operator if H is a closure operator, i.e monotone,
inclusive and idempotent, and satisfies the following conditions for all X ∈P (ON):
0∈H(X), and, if α has Cantor normal form ωα1 + · · · + ωαn , then α ∈H(X) ⇐⇒
α1, ..., αn∈H(X). The latter ensures that H(X) will be closed under + and σ 7→ ωσ,
and decomposition of its members into additive and multiplicative components. For
Z ∈P (ON), the operator H[Z] is defined by H[Z](X) := H(Z ∪X).
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If X consists of “syntactic material”, i.e. terms, formulae, and possibly elements
from {0, 1}, then let H[X](X) := H(k(X) ∪ X), where k(X) is the set of ordinals
needed to build this “material”. Finally, if s is a term, then define H[∫ ] by H[{s}].

To facilitate the definition of H–controlled derivations, we assign to each RSΩ–
formula A, either a (possibly infinite) disjunction

∨
(Aι)ι∈I or a conjunction

∧
(Aι)ι∈I

of RSΩ–formulae. This assignment will be indicated by A ∼=
∨

(Aι)ι∈I and A ∼=∧
(Aι)ι∈I , respectively. Define: r∈t ∼=

∨
(s

◦
∈t ∧ r = s)s∈T|t| ; ∃xF (x) ∼=

∨
(F (s))s∈T ;

(∃x∈t)F (x) ∼=
∨

(s
◦
∈t ∧ F (s))s∈T|t| ; A0 ∨ A1

∼=
∨

(Aι)ι∈{0,1}; ¬A ∼=
∧

(¬Aι)ι∈I , if
A ∼=

∨
(Aι)ι∈I . Using this representation of formulae, we can define the subformulae

of a formula as follows. When A ∼=
∧

(Aι)ι∈I or A ∼=
∨

(Aι)ι∈I , then B is a subformula
of A if B ≡ A or, for some ι∈I, B is a subformula of Aι.

Since one also wants to keep track of the complexity of cuts appearing in deriva-
tions, each formula F gets assigned an ordinal rank rk(F ) which is roughly the sup
of the level of terms in F plus a finite number.

Using the formula representation, in spite of the many rules of RSΩ, the notion
of H–controlled derivability can be defined concisely. We shall use I�α to denote the
set {ι∈I : | ι | < α}.

Definition 4.11 Let H be an operator and let Γ be a finite set of RSΩ–formulae.
H α

ρ Γ is defined by recursion on α. It is always demanded that {α} ∪ k(Γ) ⊆ H(∅).
The inductive clauses are:

(
∨

)
H α0

ρ Λ, Aι0

H α

ρ Λ,
∨

(Aι)ι∈I

α0 < α
ι0∈I �α

(
∧

)
H[ι]

αι

ρ Λ, Aι for all ι∈I
H α

ρ Λ,
∧

(Aι)ι∈I
| ι | ≤ αι < α

(Cut)
H α0

ρ Λ, B H α0

ρ Λ,¬B
H α

ρ Λ

α0 < α
rk(B) < ρ

(RefΣ(Ω))
H α0

ρ Λ, A

H α

ρ Λ,∃z Az
α0,Ω < α

A∈Σ

The specification of the operators needed for an ordinal analysis will, of course, hinge
upon the particular theory and ordinal representation system.

To connect KP with the infinitary system RSΩ one has to show that KP can
be embedded into RSΩ. Indeed, the finite KP-derivations give rise to very uniform
infinitary derivations.

Theorem 4.12 If KP ` B(a1, . . . , ar), then H Ω·m
Ω+n

B(s1, . . . , sr) holds for some

m,n and all set terms s1, . . . , sr and operators H satisfying

{ξ : ξ occurs in B(~s)} ∪ {Ω} ⊆ H(∅).

m and n depend only on the KP-derivation of B(~a).
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The usual cut elimination procedure works as long as the cut formulae have not
been introduced by an inference (RefΣ(Ω)). As the main formula of an inference
(RefΣ(Ω)) has rank Ω one gets the following result.

Theorem 4.13 (Cut elimination I)

H α

Ω+n+1
Γ ⇒ H

ωn(α)

Ω+1
Γ

where ω0(β) := β and ωk+1(β) := ωωk(β).

The reason why the usual cut-elimination method fails for cuts with rank Ω is that
it is too limited to treat a cut in the following scenario:

H δ

Ω
Γ, A

H ξ

Ω
Γ,∃z Az

(Σ–RefΩ)
· · ·H[s]

ξs

Ω
Γ,¬As · · · (s∈T )

H ξ

Ω
Γ,∀z ¬Az

(∀)

H α

Ω+1
Γ

(Cut)

Fortunately, it is possible to eliminate cuts in the above situation provided that the
side formulae Γ are of complexity Σ. The technique is known as “collapsing” of
derivations.

In the course of “collapsing” one makes use of a simple bounding principle.

Lemma 4.14 (Boundedness) Let A be a Σ-formula, α ≤ β < Ω, and β ∈ H(∅). If
H α

ρ Γ, A , then H α

ρ Γ, ALβ .

If the length of the derivation is already ≥ Ω, then “collapsing” results in a shorter
derivation, however, at the cost of a much more complicated controlling operator.

Theorem 4.15 (Collapsing Theorem) Let Γ be a set of Σ-formulae. Then we have

Hη
α

Ω+1
Γ ⇒ Hf(η,α)

ψΩ(f(η,α))

ψΩ(f(η,α))
Γ ,

where
(
Hξ

)
ξ∈T (Ω)

is a uniform sequence of ever stronger operators.

From Lemma 4.14 it follows that all instances of (RefΣ(Ω)) can be removed from
derivations of length < Ω. For the latter kind of derivations there is a well-known cut-
elimination procedure, the so-called predicative cut-elimination. Below this is stated
in precise terms. It should also be mentioned that the ϕ function can be defined in
terms of the functions of T (Ω) and that ϕαβ < Ω holds whenever α, β < Ω.

Theorem 4.16 (Predicative cut elimination)

H δ

ρ Γ and δ, ρ < Ω ⇒ H ϕρδ

0
Γ .

The ordinal ψΩ(εΩ+1) is known as the Bachmann-Howard ordinal. Combining the
previous results of this section, one obtains:

Corollary 4.17 If A is a Σ-formula and KP ` A, then LψΩ(εΩ+1) |= A.

The bound of Corollary 4.17 is sharp, that is, ψΩ(εΩ+1) is the first ordinal with that
property. Below we list further results that follow from the ordinal analysis of KP.

Corollary 4.18 (i) |KP| = |KP|sup = |KP|Π2 = |KP|EΠ2
= ψΩ(εΩ+1).

(ii) spΣ1
(KP) = ψΩ(εΩ+1).
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4.3 Ordinal analysis of KPM

In many respects, KP is a very special case. Several fascinating aspects of ordinal
analysis do not yet exhibit themselves at the level of KP. An example for the latter
is that, in general, spΣ1

(T ) is not contained in the ordinal representation system; the
connection between them only emerges at the level of stronger theories. Furthermore,
up to now the approach of “using” large cardinals to devise strong ordinal represen-
tation systems is only exemplified in a very weak sense namely in the shape of an
uncountable cardinal. For these reasons, I shall outline the ordinal analysis of the
stronger theory KPM. KPM formalizes a recursively Mahlo universe of sets and is
considerably stronger than ∆1

2 − CA+BI. It is distinguished by the fact that it is
essentially the ‘strongest’ classical theory for which a consistency proof in Martin-Löf
type theory can be carried out. The particular formal system of Martin-Löf type
theory that suffices for such a consistency proof is based on P. Dybjer’s schema of
simultaneous inductive-recursive definition (cf. [20]) or E. Palmgren’s higher order
universes (cf. [63]) and proceeds by showing the well-foundedness of the representa-
tion system T (M) that was used in the ordinal analysis of KPM (cf.[74]) in type
theory. However, I should be a little cautious here as a full proof has not yet been
written down, mainly because it taxes the limits of human tolerance. Though, for a
strong fragment of KPM (wherein the foundation scheme is restricted to set-theoretic
Π2 formulas) there is a full proof, using techniques of [86, 76].

4.3.1 The theory KPM

KPM is an extension of KP by a schema stating that for every Σ1-definable (class)
function there exists an admissible set closed under this function. Its canonical models
are the sets Lµ with µ recursively Mahlo. To be more precise, the language of KPM,
denoted by LAd, is an extension of the language of KP by a unary predicate Ad
which is used to express that a set is an admissible set. In addition to the axioms of
KP, KPM has the following axioms:

Ad-Limit: ∀x ∃y (x ∈ y ∧ Ad(y)).

Ad-Linearity: ∀u ∀v [Ad(u) ∧ Ad(v) → u ∈ v ∨ u = v ∨ v ∈ u].
(Ad1): Ad(a) → ω ∈ a ∧ ∀x ∈ a∀z ∈ x z ∈ a.
(Ad2): Ad(a) → Aa,

where the sentence A is a universal closure of one
of the following axioms:

Pairing: ∃x (x = {a, b}).
Union: ∃x (x =

⋃
a).

∆0–Sep: ∃x
(
x = {y∈a : F (y)}

)
for all ∆0–formulae F (b)

∆0–Coll: (∀x∈a)∃yG(x, y) → ∃z(∀x∈a)(∃y∈z)G(x, y)
for all ∆0–formulae G(b).

(M): ∀x ∃y G(x, y) → ∃z [Ad(z) ∧ (∀x∈z) (∃y∈z)G(x, y)]
for all ∆0–formulae G(a, b).
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4.3.2 Ordinal functions based on a weakly Mahlo cardinal

To develop a sufficiently strong ordinal representation system we first develop certain
collapsing under the assumption that a weakly Mahlo cardinal exists (cf. [73]).

In a paper from 1911 Mahlo [55] investigated two hierarchies of regular cardinals.
Mahlo called the cardinals considered in the first hierarchy πα-numbers. In modern
terminology they are spelled out as follows:

κ is 0-weakly inaccessible iff κ is regular;

κ is (α+ 1)-weakly inaccessible iff κ is a regular limit of α-weakly inaccessibles

κ is λ-weakly inaccessible iff κ is α-weakly inaccessible for every α < λ

for limit ordinals λ. This hierarchy could be extended through diagonalization, by
taking next the cardinals κ such that κ is κ-weakly inaccessible and after that choosing
regular limits of the previous kind etc.

Mahlo also discerned a second hierarchy which is generated by a principle superior
to taking regular fixed-points. Its starting point is the class of ρ0-numbers which later
came to be called weakly Mahlo cardinals. Weakly Mahlo cardinals are larger than
any of those that can be obtained by the above processes from below. Here we shall
define an extension of Mahlo’s π-hierarchy by using ordinals above a weakly Mahlo
to keep track of diagonalization.

Definition 4.19 Let

M := first weakly Mahlo cardinal (55)

and set

<M := {π < M : π regular, π > ω}. (56)

Variables κ, π will range over <M.
An ordinal representation system for the analysis of KPM can be derived from

the following functions and Skolem hulls of ordinals, defined by recursion on α:

CM(α, β) =


closure of β ∪ {0,M}
under:

+, (ξ 7−→ ωξ)
(ξδ 7→ χξ(δ))ξ<α
(ξπ 7−→ ψξ(π))ξ<α

(57)

χα(δ) ' δth regular π < M s.t. CM(α, π) ∩ M = π (58)

ψα(π) ' min{ρ < π : CM(α, ρ) ∩ π = ρ ∧ π ∈CM(α, ρ)}. (59)

Lemma 4.20 For all α,
χα : M → M

i.e. χα is a total function on M.

Proof : Set
Xα := {ρ < M : CM(α, ρ) ∩M = ρ}.
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We want to show that Xα is closed and unbounded in M. As M is weakly Mahlo
the latter will imply that Xα contains M-many regular cardinals, ensuring that χα is
total on M.

Unboundedness: Given η < M, define

η0 = sup(CM(α, η + 1) ∩M)

ηn+1 = sup(CM(α, ηn) ∩M)

η∗ = sup
n
ηn.

One easily verifies CM(α, η∗) ∩M = η∗. Hence, η < η∗ and η∗ ∈ Xα.
Closedness: If Xα ∩ λ is unbounded in a limit λ < M, then

CM(α, λ) =
⋃

ξ∈Xα∩λ

CM(α, ξ),

whence
CM(α, λ) ∩M = sup{ξ : ξ∈Xα ∩ λ} = λ,

verifying λ∈Xα. ut
For a comparison with Mahlo’s πα numbers let Iα be the function that enumerates,

monotonically, the α-weakly inaccessibles. Neglecting finitely many exceptions, the
function Iα enumerates Mahlo’s πα numbers.

Proposition 4.21 For α < M let

∆(α) := the αth κ < M such that κ is κ-weakly inaccessible.

(i) ∀α < ∆(0)∀ξ < M Iα(ξ) = χα(ξ).

(ii) ∆(α) = χM(α).

(iii) If χM(α) ≤ β < χM(α+ 1), then ∀ξ ≤ α χβ(ξ) = χM(ξ).

(iv) If β = χM(α), then ∀ξ ≤ M χβ(α+ ξ) = Iβ(ξ).

(v) If χM(α) < β < χM(α+ 1), then ∀ξ < M χβ(α+ 1 + ξ) = Iβ(ξ).

Ever higher levels of diagonalizations are obtained by the functions χM
M

, χM
MM

,
etc.

The preceding gives rise to an EORS T (M) (similarly as sketched for T (Ω)) which
is essentially order isomorphic to CM(εM+1, 0). This EORS exactly captures the
strength of KPM.

4.3.3 The rules of RSM

The next step consists in utilizing T (M) for an ordinal analysis of KPM. Here
we restrict ourselves to ordinals from T (M). The RSM–terms and their levels are
generated as the RSΩ-terms, except that in the starting case, for each α < M, Lα is
an RSM–term of level α. We will use s ∈ RSM to convey that s is an RSM-term. The
atomic formulae of RSM are those of either form (s∈t), ¬(s∈t), Ad(s), or ¬Ad(s).
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Definition 4.22 The rules of RSM comprise (∧), (∨), (b∀), (b∃),∀,∃, (/∈),
(∈), (Cut) as for RSΩ. The additional rules are:

(¬Ad)
· · ·Γ,Lκ 6= t · · · (κ ≤ | t |)

Γ,¬Ad(t)

(Ad)
Γ,Lκ = t
Γ,Ad(t)

if κ ≤ | t |

(RefΣ(π))
Γ, ALπ

Γ, (∃z∈Lπ)A
z if A is a Σ-formula whose terms have levels < π

(M)
· · ·Γ, ∃y F (s, y) · · · (s∈RSM)

Γ,∃z [Ad(z) ∧ (∀x∈z)(∃y∈z)F (x, y)]
if F is ∆0.

Extending Definition 4.10, we assign to the RSM–formula Ad(t) the disjunction
Ad(t) ∼=

∨
(Lπ = t)Lπ∈I , where I := {Lκ : κ∈<M;κ ≤ | t |}.

Definition 4.23 Let H be an operator and let Γ be a finite set of RSM–formulae.
H α

ρ Γ is defined by recursion on α. It is always demanded that {α} ∪ k(Γ) ⊆ H(∅).
The inductive clauses are:

(
∨

)
H α0

ρ Λ, Aι0

H α

ρ Λ,
∨

(Aι)ι∈I

α0 < α
ι0∈I �α

(
∧

)
H[ι]

αι

ρ Λ, Aι for all ι∈I
H α

ρ Λ,
∧

(Aι)ι∈I
| ι | ≤ αι < α

(Cut)
H α0

ρ Λ, B H α0

ρ Λ,¬B
H α

ρ Λ

α0 < α
rk(B) < ρ

(RefΣ(π))
H α0

ρ Λ, ALπ

H α

ρ Λ, (∃z∈Lπ)A
z

α0, π < α
π ∈ <M

A∈Σ

(M)
H[s]

αs

ρ Λ,∃y F (s, y) for all s∈RSM

H α

ρ Λ,∃z [Ad(z) ∧ (∀x∈z)(∃y∈z)F (x, y)]

| s | ≤ αs < α
F ∈ ∆0

As in the case of KP and RSΩ, the proof system RSM is tailored for an embedding
of KPM.

Theorem 4.24 If KPM ` B(a1, . . . , ar), then H Ω·m
Ω+n

B(s1, . . . , sr) holds for some

m,n and all set terms s1, . . . , sr and operators H satisfying

{ξ : ξ occurs in B(~s)} ∪ {M} ⊆ H(∅).

m and n depend only on the KPM-derivation of B(~a).
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The cut-elimination procedure for RSM is rather intricate (cf. [74]) and involves
many more steps than in the case of RSΩ. Omitting further details, we just state the
outcome of it and a well-ordering proof for all initial segments of T (M) in KPM.

Corollary 4.25 Letting Ω := χ0(0), we have:

|KPM| = |KPM|sup = |KPM|Π2(L(ωCK
1 )) = |KPM|EΠ2

= ψεM+1(Ω).

4.3.4 Recursively large ordinals and ordinal representation systems

The large cardinal hypothesis that M is the first weakly Mahlo cardinal is outrageous
when compared with the strength of KPM. However, it enters the definition proce-
dure of the collapsing function χ, which is then employed in the shape of terms to
“name” a countable set of ordinals. As one succeeds in establishing recursion rela-
tions for the ordering between those terms, the set of terms gives rise to an ordinal
representation system. It has long been suggested (cf. [25], p. 436) that, instead, one
should be able to interpret the collapsing functions as operating directly on the recur-
sively large counterparts of those cardinals. For example, taking such an approach in
Definition 4.19 would consist in letting

M := first recursively Mahlo ordinal

and setting <M := {π < M : π admissible, π > ω}. The difficulties with this approach
arise with the proof of Lemma 4.20. One wants to show that, for all α, χα(β) < M
whenever β < M. However, the arguments of the cardinal setting no longer work here.
To get a similar result for a recursively Mahlo ordinal µ one would have to work solely
with µ-recursive operations. In addition, the functions ψα would have to operate on
admissible ordinals π. Here one wants ψπ(α) < π. In the cardinal setting this comes
down to a simple cardinality argument. To get a similar result for an admissible π one
would have to work solely with π-recursive operations. How this can be accomplished
is far from being clear as the definition of CM(α, ρ) for ρ < π usually refers to higher
admissibles than just π. Notwithstanding that, the admissible approach is workable
as was shown in [77, 81, 92]. A key idea therein is that the higher admissibles which
figure in the definition of ψπ(α) can be mimicked via names within the structure Lπ

in a π-recursive manner.
The drawback of the admissible approach is that it involves quite horrendous

definition procedures and computations, which when taken as the first approach are
at the limit of human tolerance.

On the other hand, the admissible approach provides a natural semantics for the
terms in the EORSs. Recalling the notion of good Σ1-definition from Definition 3.32,
it turns out that all the ordinals of T (M)∩M possess a good Σ1-definition in KPM
(cf. [81]) under the interpretation which takes M to be the first recursively Mahlo
ordinal and lets the functions ψα operate on admissible ordinals instead of regular
cardinals.

Unlike in the case of KP, T (M) ∩M only forms a proper subset of the KPM-
definable ordinals, having many ‘holes’.10 Therefore, to illuminate the nature of the
ordinals in T (M), it would be desirable to find another property which singles them
out from the KPM-definable ordinals.

10The ordinals of T (M)∩M are cofinal in spΣ1
(KPM), though. Letting π0 := χεM+1(0), one has

sup(spΣ1
(KPM)) = ψ0(π0).
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endlicher Bäume, Archiv f. Math. Logik 25 (1985) 45–65.

[101] A. Setzer: A well-ordering proof for the proof theoretical strength of Martin-Löf type
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