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ABSTRACT

Cantor and derived sets. Ordinals as a recursive datatype and Or-
dinals as isomorphism types. Definition of countable, of cofinality.
Clubsets, normal functions. Families of binary functions; notations
and normal forms. Dominance; fast-growing functions IN→ IN. Fun-
damental sequences. Connections with primitive recursion, double
recursion etc. Schmidt-coherence.

Prerequisites: wellfounded relations. (Also a bit of recursion theory if we
can to cover everything here)
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At some point must discuss what goes wrong if you try to use the Cantor
Normal Form division algorithm with a base other than ω. I’ve never thought
about it, but it goes wrong, and that is why it is never done!
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Notation, Background, etc

Lowercase Greek letters are used to range over ordinals. Its use in λ-calculus
notwithstanding, the letter ‘λ’ is always liable to be a variable ranging over
limit ordinals in the way that in A-level analysis ‘x’ and ‘y’ are ordinate and
abcissa, or input and output variables. With this in mind I shall refrain from
using lambda notation, using the ‘7→’ notation instead.

I am going to assume that you all know what a wellfounded relation is, what
wellfounded induction is, and know what a recursive datatype is. The colex
ordering of sequences from a set is the ordering by last difference. explain colex

I am also going to assume that you know a bit of first-year analysis: the
rationals are countable and dense in the reals (which are not countable); there
is a real between any two rationals and a rational between any two reals. The
set of naturals is of size ℵ0; the continuum is of size 2ℵ0 . The Continuum
Hypothesis is the proposition that 2ℵ0 = ℵ1. Perhaps you do not yet know
what ℵ1 is but this will be explained to you on page 9.

I am going to assume that you know a bit of recursive function theory, though
not very much, and only in the last few pages.

0.1 Finite Objects

I’m going to assume that you have a concept of finite object. A set X of things
is a set of finite objects iff there is a system of notation for members of X
such that every member of X has a finite description. (Natural numbers are
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finite objects; rationals and algebraics are finite objects; reals famously are not.
They are infinite precision objects.) The observant reader will complain that—
according to this definition—any object that belongs to a countable set X can
be made to be a finite object: all that one has to do is fix in advance a bijection
between X and IN, and then one can point to an object by saying that it is
the nth member of X according to the given enumeration. Of course life is not
that simple. One does not want X to be just any old random assemblage of
things, one wants it to be a set in the rather stricter sense in which one speaks
of a set of spoons, or a set of plates, or a set of rules, or a chess set: X must
be a family of homologous objects admitting a uniform description (or a union
of finitely many such families). Further, the enumeration of this non-random
collection must be in some informal sense computable. Indeed there is a useful
and practical converse to this, which I impress on all my first-years. If you are
presented with a natural set (not a mere assemblage) and you want to know
whether or not it is countable: ask yourself: are its members finite objects?
Do I have a uniform finitary system of notation for its members? If I do,
it’s countable—and if it doesn’t it isn’t. This simple heuristic is a remarkably
efficacious way deciding whether or not a candidate set is countable.

The concept of finite object is not a mathematically rigorous one, but it is
very important nevertheless. I have a hunch that the most sympathetic (and
quite possibly the most correct) way to understand the Hilbert programme
is as an endeavour to represent as much as possible of mathematics as the
study of finite objects. Finitism started off as a sensible idea: ideologies always
do—however crazy they turn out to be later. Look at how much progress in
Mathematics involves reducing problems to finite calculations. Once you have
any intuition of a difference between finite objects and infinite objects you notice
that finite objects are tractable and infinite objects aren’t, and progress in
the study of particular kinds of mathematical objects happens when you find
ways of thinking of them as finite objects. (Algebraic topology etc.; Euler’s
polyhedron formula is a nice example of distillation of finite information from
infinite sources. Knots.) Proofs are finite objects; all of syntax is peopled with
finite objects. It is not at all barmy to think that mathematics is really the study
of finite objects, and that a preoccupation with trying to express everything in
terms of structure of finite character is the way to go. It may be mistaken,
but it certainly isn’t barmy. It’s mistaken beco’s the aim of Mathematics is to
generalise, but it’s not crazy.

A set-of-finite-objects is a set equipped with enough structure for there to
be a system of notation that allocates everything in the suite a description con-
taining only finitely many symbols. The minimal conditions for this to happen
seem to be for the set to be a recursive datatype of finite character, or—to put
it another way— (using an encoding scheme) an r.e. or semidecidable set of
naturals. This is why the (recursive) axiomatisablity of First Order Logic is so
important: valid sentences of First Order Logic come equipped with proofs that
are finite objects, but valid sentences of higher-order logic do not.

Given their importance, clarifying the concept of finite object is probably
a good project. One way into it is to think about countable ordinals. We will
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see that the collection of countable ordinals is itself uncountable, and so its
members cannot be thought of as finite objects. However all its proper initial
segments are countable, so the inhabitants of any proper initial segment can be
thought of as finite objects. But not uniformly! It was the thought that this
nonuniformity could be an opening into the concept of finite object that was one
of the attractions for me of the project of understanding countable ordinals.1

1 Ordinals as a Recursive Datatype

1.1 Cantor’s discovery of ordinals

Ordinals were invented by Cantor to solve a problem in the theory of Fourier
series. Although it’s an interesting story I shall consider only those bits of it
that are directly relevant.

A Fourier series whose every coefficient is zero is obviously the identically
zero function. What about the converse? Cantor’s first theorem said that if S
is a Fourier series which converges to 0 everywhere then all coefficients are zero.

Obvious question: can we weaken the hypothesis by weakening ‘everywhere’
to ‘except on a something-or-other set’. The answer is: yes, indeed we can.
(Think about the Fourier series for a square wave.) Quite how far one can
weaken it is a question that doesn’t have a nice answer. However Cantor was
able to show that “something-or-other” can be closed-countable, and he did
this by transfinite induction on the rank of closed sets. It turns out that the
assumption of closedness is unneccessary, as was shown by an Englishman by
the name of ‘Young’ by a completely different method.2 But the trip up the
blind alley at least gave us ordinals.

Cantor was interested in applying to an arbitrary closed set X of reals the
operation that returns its derived set: the set of all limit points of X. If X is
closed its derived set is a subset of it. How often can one apply this operation to
a closed set before one reaches either an empty set or a perfect closed set (which
is a fixed point, being equal to its derived set)? The interesting point here is
that since this operation is monotone decreasing with respect to ⊆ it makes
sense to think of transfinite iteration: one can take intersections at limit stages
and carry on deriving. So the answer to the question “How often?” might not
be a natural number. What sort of number is it? The answer is that it will
be an ordinal. Ordinals are the kind of number that measures the length of
precisely this sort of process: transfinite and discrete.

1There is an apparent paradox here (which we shouldn’t really discuss at this point, for
fear of frightening the horses). We shall see later that, for any countable ordinal α, every
countable ordinal β > α gives us a way of thinking of α (indeed of every ordinal < β) as a
finite object. But there are uncountably many countable ordinals β > α so this means that
there are uncountably many finitary systems of notation for countable ordinals. But a finitary
system of notation is itself a finite object, being a finite set of rules over a countable alphabet,
so there are only countably many of them. This will be resolved later in these notes (see p
11)by the concept of a recursive ordinal.

2I stumbled upon the article in which Young proved this. It is in the same volume of the
same journal as the article [12] by Hardy below!
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The idea that ordinals count the length of discrete transfinite processes
should be taken seriously and can be taken further. There is an addition oper-
ation on processes, written ‘+’ with overloading, but no operation of multipli-
cation of processes by processes. However there is a notion of multiplication of
a process by an ordinal (“Do this α times”): a process multiplied on the right
by an ordinal is another process.

Thus, if we let p and s be processes, and let α and β be ordinals then we
have the following easy equations:

1. p · (α + β) = p · α + p · β

2. s · (α · β) = (s · α) · β

and others like it. The effect is that processes form a module over the ordinals.
In fact this could be an operational way of characterising the ordinals: as that-
kind-of-number-such-that-processes-form-a-module-over-them3

I’m not sure how seriously this idea should be taken: granted, there seems
to be a good notion of length of a process, but it’s pretty clear that there is no
good notion of inner product nor of dot product of two processes. However I
have recently (re)discovered a typescript of Girard and Norman which says that
things called dilators (which we may see later) behave like linear operators in
vector spaces . . . so presumably they had the same idea.

Even if all we know about ordinals is that they are the kind of number
that enumerates the stages in processes like that of Cantor’s we considered,
we nevertheless know quite a lot about them. At any stage there is always in
principle the possibility of a next stage, so the successor of an ordinal is an
ordinal. But because the operation of taking-the-derived-set is monotone, there
is a concept of a limit stage, so it must be that a supremum of a set of ordinals
is an ordinal.

At this point I should really give a presentation of the ordinals as a recursive
datatype. Unfortunately I am not in a position to do this, since locating the
exact answer turns out to be a fiddlier task than I had hoped, and it may well
be that there is more than one way of doing it. I shall restrict myself to making
some basic but (i hope) helpful observations.

1. The idea is that the Ordinals are like the naturals with an extra con-
structor: sup of, which is applied to sets of ordinals. This makes it a
higher-order recursive datatype.

2. Since distinct sets of ordinals can have the same sup the sup constructor
is not free, and this is the chief source of the trouble.

3. The reader should rehearse the way in which the declaration of IN as a
rectype gives rise to the engendering relation <IN and a proof that that
engendering relation is a total order, and wellfounded. Make sure you
understand that. Once you do, you will be able to see what a declaration
of the ordinals should look like.

3Pedants will delight in pointing out that modules are formed over rings and that the
ordinals do not form a ring.
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For the moment I am going to assume that all that has been dealt with.

1.2 Operations on ordinals

Now we can give some recursive definitions of the obvious operations, starting
with addition.

DEFINITION 1
α + 0 := α;
α + succ(β) := succ(α + β);
α + sup(X) := sup{α + β : β ∈ X}.

THEOREM 2 For all ordinals α and β, α ≤On β iff (∃γ)(α + γ = β).

The best way to prove this is use of the picture of ordinals as isomorphism
classes. See section 1.3 below.

Next a little lemma we shall need later.

LEMMA 3

1. (∀α)(∀β)(α ≤ α + β)

2. (∀α)(∀β)(β ≤ α + β)

Proof: The proof of this falls into two cases, and the cases are different because
addition on the left is different from addition on the right

Case 1: α ≤ α + β

For each α we prove by induction on β that α ≤ α + β.

Case 2: β ≤ α + β

For β ≤ α + β we prove by induction on β that (∀α)(β ≤ α + β).
Clearly (∀α)(0 ≤ α + 0)
For the successor case, assume (∀α)(β ≤ α + β). We want (∀α)(β + 1 ≤

α + β + 1). But clearly β ≤ α + β iff β + 1 ≤ α + β + 1.
For the limit case let λ =supX. Let α be arbitrary. We want λ ≤ α + λ.
α + λ = α+supX
α+supX =sup{α + β : β ∈ X}
But now (by induction hypothesis) everything β in X is ≤ something (to wit:

α+β) in {α+β : β ∈ X} so supX—which is λ—is ≤ sup{α+β : β ∈ X}—which
is α + λ.

Notice that for Case 1 we did a ∆0 induction and for Case 2 we had to do a
Π1-induction. Addition on the right is easier to reason about than addition on
the left!
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LEMMA 4 The ordinals ≤ α are totally ordered by ≤.

Proof: We do this by induction on α. The base case is immediate; the succ details here
case is just like the inductive proof that <IN is a total order. For the limit case
we exploit (∀α)(∀S ⊂ On)((α <sup(s))→ (∃β ∈ S)(α ≤ β)).

If α1 ≤ sup(S) and α2 ≤ sup(S) then there is β ∈ S with α1 ≤ β and
α2 ≤ β. (Indeed, by lemma ??, β can be taken to be α1 + α2 or α2 + α1.) But
then α1 and α2 are comparable by induction hypothesis.

COROLLARY 5 <On is a wellorder.

Proof: It’s wellfounded because it is the engendering relation of a rectype. To
show it’s a total order consider two arbitrary ordinals α and β. By lemma 3, α
and β are both ≤ α + β. Then by lemma 4 the ordinals below α + β are totally
ordered.

This proof of corollary 5 is mine, though it may well have been anticipated.
If so, I hope my readers will tell me. There is a proof concealed in the papers
of Bourbaki [2] and Witt [21] (See Appendix 1).

It now seems to me that one can give a much shorter proof that < is a
total order. We know it is wellfounded. Consider a minimal member α1

of X = {α : (∃β)(α 6= β 6> α 6> β)}, and then a minimal member α2

of {α : α 6= α1 6> α 6> α1}. Thus α1 and α2 are incomparable minimal
elements of X. The ordinals below α1 form a chain A1 and the ordinals
below α2 form a chain A2. Now these must be the same chain, so we
call it A. If A has a top element—α, say—then α1 and α2 must both
be succ(α). If not, they must both be sup(A). Either way, they are the
same.

Now we can procede to define multiplication:

DEFINITION 6

α · 0 := 0;
α · succ(β) := (α · β) + α;
α · sup(X) := sup({α · β : β ∈ X});

and exponentiation:

DEFINITION 7

α0 := succ(0);
α(succ(β)) := (αβ) · α;
α(sup(X)) := sup({αβ : β ∈ X}).

Given these definitions, it is clear that addition on the right, multiplication
on the right and exponentiation on the right, namely, the functions α 7→ (β+α),
α 7→ (β · α) and α 7→ (βα) are—for each ordinal β—continuous in the sense in
which the ordinals are (very nearly) a chain-complete poset.
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EXERCISE 1

1. Give examples to show that addition and multiplication on the left are not
commutative.

2. Give an example to show that α 7→ α2 is not continuous.

3. Which of the following are true for all α, β and γ?

(a) (α · β)γ = αγ · βγ ;

(b) γ(α+β) = γα · γβ;

(c) (α + β) · γ = α · γ + β · γ;

(d) γ · (α + β) = γ · α + γ · β.

Prove the true assertions and give counterexamples to the false assertions.

DEFINITION 8 If 〈X, R〉 and 〈Y, S〉 are two wellfounded binary structures
then f : X → Y is parsimonious if, for all x ∈ X, f(x) is an S-minimal y in
Y such that (∀x′Rx)(f(x′)Sy).

REMARK 9 For every wellfounded binary structure 〈X, R〉 there is a unique
parsimonious map to the ordinals. That is to say that On is a terminal object
in the category of wellfounded binary structures and parsimonious maps.

1.3 Ordinals as Order Types

If we think of On as an abstract datatype in this way it is natural to associate
to each ordinal a picture consisting of a string of dots and lines, in fact: a Hasse
diagram. Now Hasse diagrams are usually pictures of posets. This reminds us
that ordinals can also be thought of as relational types (isomorphism classes) of
posets: rather special posets in fact, to wit wellorderings.

A Wellordering is a wellfounded strict partial order. An ordinal is an iso-
morphism type of wellorderings. (I don’t want to say it’s an isomorphism class,
because I really don’t want to get embroiled in issues of set existence!) Thus
we say that an ordinal is the length of a wellordering whose type it is. Peo-
ple sometimes write ‘order type of’ instead of ‘length of’. A countable ordinal
is the ordinal of a wellordering whose carrier set is countable, without loss of
generality the length of a wellordering of IN. Countable

ordinal
more details
here

The following fact about ordinals is of fundamental importance. For any
ordinal α, α is the order type of the set {β : β < α} of ordinals below α in the
obvious ordering (of definition 35.) This fact is so cute that it has become the
basis of the standard implementation of ordinal arithmetic into set theory. In
this implementation (due to Von Neumann) each ordinal is simply taken to be
the set of ordinals below it.

There is a slight niggle over this, and it concerns polymorphism. Usually we
take lists to be polymorphic: for each type α there is a type α-list. However
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once we apply the length constructor to objects of any of these types we get
objects of only the one type: int. We don’t get a polymorphic family α-int,
and nobody would normally suggest that we should. However, if one were an
extreme purist one might note that, strictly speaking, Euler’s totient function
(for example) is properly defined only for those ints that are ints of lists of
ints, not on ints that are ints of lists of wombats, for example. However
this purism is obviously extreme, since it’s pretty clear that all these types
are isomorphic and we will happily make do with only one type of ints. This
will enable us to minute that fact that, for any natural number n, the set
[0, n − 1] of its predecessors is of length n. Rosser called this the Axiom of
Counting. The axiom of counting (for IN at any rate) is fine4; it is the extension
of this observation to ordinals that is ultimately problematic. The problem it
ultimately leads to is the Burali-Forti paradox.

If we accept the transfinite version of Rosser’s Axiom of Counting then the
length of any initial segment A of the ordinals is the least ordinal α not in
A. So what is the length of the (indisputably wellordered) collection On of
all ordinals? It would have to be the least ordinal not in On! It seems that in
order to avoid Burali-Forti one needs a stronger typing system that distinguishes
between ordinals-from-(infinite)-lists-of-as and ordinals-from-(infinite)-lists-of-
bs. However the point at which hygiene compels one to adopt this stronger
typing machinery comes a long way beyond ω1. (It is not blindingly obvious
that there are uncountable wellorderings—and we won’t prove it—but in fact
there are.) Fortunately for us we will be concerned in these notes with countable
ordinals only; these dangers will remain innocuously over the horizon and we can
quite safely take our ordinals to be monomorphic as we did our naturals, with
the effect that we believe the analogue of the axiom of counting for countable
ordinals.

Our concerns are fairly limited here and—mostly—this possibility of think-
ing of ordinals as relational types isn’t important to us. However there are
some ideas important to us for which this alternative concept of ordinals is in-
dispensible, at least initially. Recall that a countable ordinal is an ordinal of a
wellordering of a countable set. Since, by the Extended Axiom of Counting, ev-
ery ordinal counts the set of its predecessors in the obvious ordering, this is the
same as being an ordinal with countably many predecessors. The set of count-
able ordinals is sometimes called the Second Number Class. The countable Second

Number
Class

ordinals are naturally ordered by magnitude, so the Second Number Class has
an ordinal. By the Extended Axiom of Counting its ordinal must be the least
ordinal not in it, and the least ordinal not in it is obviously the first uncountable
ordinal. This ordinal is called ‘ω1’. If we ask not for the length of the set ordered
by magnitude, but for its cardinal number (“How many countable ordinals are
there?”), the answer is ‘ℵ1’.

We also need the concept of the cofinality of an ordinal.

DEFINITION 10 The cofinality cf(α) of an ordinal α is the least ordinal that
is the length of an unbounded subset of a wellordering of length α.

4There is virtue to be gained from thinking about how one might prove it!
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At this point we should minute the standard fact that—assuming the count-
able axiom of choice—cf(ω1) = ω1. Suppose not, and let 〈X, <〉 be a wellorder-
ing of length ω1 with x1 < x2 < x3 . . . a cofinal subsequence of length ω. Then
if we let Xn =: {x ∈ X : xi ≤ x < xi+1} then all the Xn are countable (ω1

is the least uncountable ordinal after all) so {Xn : n ∈ IN} is a partition of
the uncountable set X into countably many countable pieces. Countable choice
tells us that a union of countably many countable sets is countable.

(and yes, X here could be taken to be the second number class).
Notice that cf is idempotent: cf(cf(α)) = cf(α). This is because “is a

cofinal subsequence of” is transitive.

THEOREM 11 Every countable limit ordinal is of cofinality ω.

Proof:
Let α be a countable limit ordinal. Then there is a worder <α of IN of order

type α. We now define a cofinal subsequence of 〈IN, <α〉 of length ω. The first
point is 0. Thereafter then n + 1th point is the smallest natural number which
is >α the nth point.

Why is this sequence cofinal? Suppose it reaches a limit below α. Consider
a natural number above this limit. It must be below something (say the nth)
in the list of points we have identified, since this list contains arbitrarily large
natural numbers. But then, at that stage n, it was a better candidate to be the
nth point than the point we chose.

It is very important that this construction of a cofinal sequence for α needs
an extra input, namely the wellordering <α of IN. If we vary the choice of α we
get a different cofinal sequence.

There doesn’t seem to be any uniform way of devising a cofinal sequence for
α that works solely from the order structure of α itself. Of course if we had
a uniform way of devising—on being given a countable ordinal β—a bijection
between IN and the ordinals below β, then we could plug that bijection into the
construction of theorem 11 to obtain a uniform construction of a family of cofinal
sequences. But then we don’t have a uniform way of obtaining such bijections
either! This fact is an easy consequence of a rather hard result, namely that ZF
does not prove that ℵ1 ≤ 2ℵ0 . ZFC proves that ℵ1 ≤ 2ℵ0 , and ZF proves that
ℵ1 ≤∗ 2ℵ0 . If we had a uniform way of selecting, for each countable ordinal,
a wellordering of IN of that length, then we would have an injection from the
second number class (which is of size ℵ1) into the reals. (This will be remark
23.)

The picture of ordinals as order-types of wellorderings also gives us slightly
smoother—and more fundamental—motivations for the operations of addition,
multiplication and exponentiation of ordinals that we have already seen. Addi-
tion corresponds to disjoint union (concatenation) and multiplication to colex
order of the product. It is worth noting that because these definitions do not
involve recursion we can invoke them in connection with linear order types that
are not wellfounded: they work for arbitrary total order types. And the opera-
tions obey the distributivity laws that you expect.
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Another operation that is motivated by the picture of ordinals as isomor-
phism types of wellorderings is subtraction: when β ≤ α we say α − β is the
length of a well-ordering obtained by chopping off from a well-ordering of length
α the unique initial segment of length β. Observe however that for subtraction
of β from α to be well-defined we need (i) an ordering of type α to have a unique
initial segment of type β—or at the very least we need (ii) all the tail segments
that remain after deleting of an initial segment of type β to be isomorphic. Thus
we can subtract ω∗ from ω∗ + ω to obtain ω but to get subtraction of β from α
to be defined for all β ≤ α we need all initial segments of an ordering of type
α to be pairwise nonisomorphic—or something quite like it—and there is not
much hope of that unless α is an ordinal.

EXERCISE 2 Give a recursive definition of ordinal subtraction, and prove that
your definition obeys β + (α− β) = α.

Ther is one other fact about ordinals we will need which can be obtained
only from the ordinals-as-isomorphism-classes-of-wellorderings view. Here we
will be concerned specifically with countable ordinals. Recall that a countable
ordinal α is the length of a wellordering of a countable set. So without loss of
generality α is the length of a wellordering of IN. A wellordering of IN can be
coded as a set of ordered pairs of naturals, and ordered pairs of naturals can be
coded as naturals. Wellorderings of IN can therefore be coded as sets of naturals,
which is to say as reals. This means that there is a surjection from the set of
reals to the set of countable ordinals as follows: if a real codes a wellordering
of IN, send it to its length, else 0. Notice that this does not obviously give us
an injection from the second number class into the reals: to do that we would
have to choose, for each countable ordinal, a wellordering of the naturals of that
length, and there is no obvious way to choose one. Notice that countable choice
does not help here. We shall see more of this later.

A countable ordinal is an ordinal that is the length of a wellordering of IN
or of a subset of IN—it makes no difference. Cantor called the set of countably
ordinals the Second Number Class (the first number class is IN). A recursive
ordinal is an ordinal that is the length of a recursive wellordering of IN or of
a subset of IN—it makes no difference, that is to say, a wellordering whose
graph (set of ordered pairs of natural numbers) is a recursive (= decidable) set.
A decidable relation on an infinite subset of IN is isomorphic to a decidable
relation on the whole of IN because the function enumerating the decidable
subset is itself decidable.

There is a simple cardinality argument to the effect that not every countable
ordinal is recursive, and I will go over it in some detail in lectures. Rosser’s ex-
tended axiom of counting tells us that the length of the wellordering of all the
countable ordinals has uncountable length, so there are uncountably many (in
fact ℵ1) countable ordinals. However the set of recursive ordinals is a surjec-
tive image of the set of all machines, and that set is countable. Clearly every
recursive ordinal is countable, so there must be countable ordinals that are not
recursive.
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DEFINITION 12
The least nonrecursive ordinal is the Church-Kleene ω1, aka ωCK

1 .

A standard application of countable choice tells us that every countable set
of countable ordinals is bounded below ω1, so we know that ωCK

1 is actually a
countable ordinal. But we can do much better than that, and without using the
axiom of choice.

REMARK 13 The family of recursive ordinals is a proper initial segment of
the second number class.

Proof:
Suppose <R is a wellordering of IN whose graph is a decidable subset of

IN × IN. That is to say that the length of <R is a recursive ordinal. Now
consider any ordinal α less than the length of R. This is the length of a proper
initial segment of <R—of <R�{m ∈ IN : m <R n} for some n, say—and this
initial segment of <R is a decidable subset of IN× IN (it has the number n as a
parameter) and its length is therefore a recursive ordinal.

REMARK 14 Every recursive limit ordinal has cofinality ω—recursively. That
is to say: whenever R is a decidable binary relation on IN that wellorders IN to
a length that is a limit ordinal there is X ⊆ IN s.t. otp(R�X) = ω.

Proof: The usual proof works. We enumerate the members of X in increasing
order x0, x1 . . .. We set x0 := 0. Thereafter xn+1 is the least natural number x
such that 〈xn, x〉 ∈ R. This is clearly an effective procedure.

EXERCISE 3 The class of recursive ordinals is closed under the Doner-Tarski
function fα for every recursive ordinal α.

Something to be alert to. Do not confuse the concept of a recursive ordinal
with the concept of a recursive pseudowellordering of IN. This would be a binary
relation R on IN which is total orders with the property that every decidable
subset of IN has an R-least member.

When reasoning inside a formal system of arithmetic are is needed in ap-
proaching the concept of recursive ordinal. It’s one thing to have a binary
relation on IN, it is quite another to have a proof that this binary relation is
a wellorder. Come to think of it, how on earth can a system of first-order
arithmetic (such as Peano Arithmetic) ever prove that a binary relation is well-
founded? After all, to show that a relation is wellfounded one has to be able
to reason about all the subsets of its domain, and a first-order theory cannot
reason about arbitrary subsets. The answer is that whenever T (being a first
order theory of arithmetic) proves that a relation R on IN is a wellorder what
is going on is that T proves all instances of R-recursion that can be expressed
in the language of T .
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1.4 Normal functions
Brief chat here
about the or-
der topology.

As usual, a set is closed iff it contains all its limit points.

DEFINITION 15

A clubset is a CLosed and UnBounded set, or, alternatively, the range of
a total continuous function.

A normal function f is
(i) continuous: f(sup(A)) = sup(f“A); and
(ii) strictly increasing: α < β → f(α) < f(β).

A clubset might be the range of lots of distinct continuous functions (repe-
titions are allowed, after all), but it is the range of only one normal function,
to wit: the function that enumerates it. This bijection between the class of
clubsets and the class of normal functions will be very useful to us. At times it
will almost feel as if we have a datatype whose members can be thought of as
clubsets and as normal functions at will. (cf page ??)

Clearly the derived set of a clubset is club.
It is easy to show that every normal function has a fixed point. If f is

normal, then sup{fnα : n ∈ IN} is the least fixed point for f above α. In fact:

LEMMA 16 The function enumerating the set of fixed points of a normal func-
tion is also normal.

Proof:
This needs only the observation that if f is continuous then the sup of any

set of fixed points for f is also fixed.

Notice that we can now define, in a completely straightforward way, a trans-
finite sequence of normal functions from the second number class into itself—or,
indeed, from the class of all ordinals into itself. Let C0 be the set of limit ordinals
in the second number class, and Cα+1 be the limit points of Cα. We say Cα+1

is the derived set [from] Cα. Take intersections at limits. The sequence of Cαs
is the sequence of derived sets. Now let fα be the function that enumerates Cα.
Cα is club so fα is normal.

(It might be an idea to think about what these functions actually are.)
If f is a a normal function then for any ordinal α we can define a function

fα as follows: f0(β) =? . . . 1,
presumablyf1(β) = f(β)

fα+1(β) = f(fα(β))

fλ(β) = sup{fζ(β) : ζ < λ}

Must check that fα is normal if f is. NB sez: if f
= succ then
fω(ω) = ω
so fω is not
strictly in-
creasing and
isn’t normal;
tf sez: this is
because succ is
not normal!

There is another way of defining unary functions from ordinals to ordinals
that gives us—I was about to say functions that are more rapidly increasing.
That wouldn’t be quite correct: every function that is given by the second

13



method is also given by the first method, but the first method takes longer to
reach it.

The second method defines C0 to be the set of limit ordinals in the second
number class as before. We take intersections at limits as before. As before fα

will be the normal function that enumerates Cα. However now Cα+1 is defined
to be the set of fixed points of the normal function fα that enumerates Cα.

(Notice that although the first method could have started with C0 =: second
number class, the second method can’t.)

We should think a bit here about what this new series of increasing functions
look like.

There is a difference between these two ways of getting fast-growing functions
that may strike a chord with people used to type disciplines. In the first case
we can think of the ordinals that are arguments and the ordinals that are values
as being two different types: green ordinals and blue ordinals.

In both cases we are indexing, by the ordinals, a family of ever-shrinking
subsets of the ordinals. (We identify each skinny subset with the function that
enumerates it). In both caes we take intersections at limits. In the first case the
next set after A is the collection of limit points of A: we define a function from
ordinals to sets of reals. f(α + 1) is the set of limit points of f(α). Nothing
in this first construction compels us to think of the shrinking sets as shrinking
sets of ordinals. Indeed in Cantor’s original setting the derived sets are all sets
of reals not sets of ordinals.

The difference between the first and second methods lies in the successor
step. In the first construction the derived set at each stage is constrained to
be a subset of the set it was derived from, so its members are objects of the
same flavour that were found in that set, and that is the only constraint on their
nature. However the second method exploits fixed points, so the functions it
speaks of must have its arguments and its values of the same type. That means
that the derived set must be a set of ordinals.

The first method is strongly typed and produces functions that don’t grow
very fast. The second method produces fast-growing functions much more effi-
ciently but is less strongly typed. What we are seeing here is another instance
of the way in which relaxation of typing disciplines makes for greater strength.

1.5 Binary functions

Unary functions are all very well, but what we are interested in is binary func-
tions. One thinks immediately of + and · and exponentiation. The anisotropy
of the ordinals makes these functions continuous in one variable but not in the
other. In fact they are normal in one variable but not in the other. For any
given α the function β 7→ α + β is normal but β 7→ β + α is not; ditto β 7→ α · β
and β 7→ αβ . The anisotropy means we have to be careful how we use them.

Doner-Tarski [4] consider a hierarchy of functions defined so that:

DEFINITION 17

14



1. f0(α, γ) =: α + γ;

2. fn+1(α, 0) =: α;5 check this!

3. fn+1(α, γ + 1) = fn(fn+1(α, γ), α);

4. fn+1(α, λ) =: supγ<λfn+1(α, γ);

5. fλ(α, β) =: supζ<λfζ(α, β).

[Beware: we are already using the notation fα in connection with Cα. How-
ever that was a nonce notation and should cause no confusion.]

If you forget this definition you will be able to reconstruct it quite easily
by remembering two special cases: the recursive way in which multiplication
is defined over addition and similarly exponentiation defined over multiplica-
tion. Indeed it is exactly that recursion which motivated the definition of this
hierarchy in the first place.

Notice that all these functions are normal in their second argument. (One
thing I would like to understand better is why the first few functions in this
sequence correspond to natural operations on wellorderings but later ones don’t.
Part of the explanation must be that—probably from as early as two stages after
exponentiation—the corresponding set theoretic operations involve transfinite
iteration of power set, but it would be nice to be able to say something more
intelligent than that.)

The functions are not continuous in their first argument. This apparently
unremarkable fact explains something that would otherwise look a bit odd.
The Doner-Tarski family arises by iterating an operation on functions (On ×
On)→ On. Why isn’t fω a fixed point for this operation? Iterating ω times is
usually enough to get a fixed point . . . . Well either the operation is not suitably
continuous, or the set of functions (On×On)→ On that we are considering is
not a chain-complete poset. Presumably it is not a chain-complete poset, and
this is something to do with them not being cts in the first argument. Notice,
too, how the declaration of the Ackermann function (which incidentally is in
O(fω)! where this time fω is the ωth function in the fast-growing hierarchy in
section 2 below) looks suspiciously like an announcement that it is a fixed point
for the Doner-Tarski operation!

I would like to know how far you have to go along the Doner-Tarski hierarchy
to get anything that dominates Ackermann. I don’t suppose it matters much
but i would sleep easier if i tho’rt i understood it.

1.6 Cantor’s Normal Form Theorem

To prove Cantor’s normal form theorem we will need to make frequent use of
the following important triviality.

5This is surely correct. fn+1(α, 0) must be the result of doing fn of something or other 0
times to α and this must be α. The consideration that causes me slight unease is that according
to this line of thought α · 0 should be α not 0. So the function we call multiplication—α · β
is actually f1(α, β + 1). Not that it matters. But one would have expected to see something
about this in the literature.
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REMARK 18 If f : On → On is normal, then for every β ∈ On there is a
maximal α ∈ On such that f(α) ≤ β.

Proof: Let α0 be sup{α : f(α) ≤ β}. By continuity of f

f(α0) = f(sup{α : f(α) ≤ β})

which by continuity of f is

sup{f(α) : f(α) ≤ β})

which of course is ≤ β since the ordinals are totally ordered. So α0 is the largest
element of {f(α) : f(α) ≤ β}).

The way into Cantor Normal Forms is to think of remark 17 as a rudimentary
result of the kind “Given an ordinal β and a normal function f , f(α0) is the
best approximation to β from below that I can give using f .” Cantor Normal
form is an elaboration of this idea into a technique. Let us first minute a few
normal functions to see what sort of things we can attack β with. For every
α > 0 the functions

γ 7→ α + γ; γ 7→ α · γ; γ 7→ αγ

are all normal, and each is obtained by iteration from the preceding one.
We are given β and we want to express it in terms of a normal function. Let

α be some random ordinal below β. Then γ 7→ αγ is a normal function and
since α < β we know by remark 17 that there is a largest γ such that αγ ≤ β.
Call this ordinal γ0. Then αγ0 ≤ β. If αγ0 = β we stop there.

Now consider the case where αγ0 < β. By maximality of γ0 we have

αγ0 < β < αγ0+1 = αγ0 · α (*)

We now attack β again, but this time not with the normal function γ 7→ αγ

but the function θ 7→ αγ0 · θ. So by remark 17 there is a maximal θ such that
αγ0 · θ ≤ β. Call it θ0. By (*) we must have θ0 < α.

If αγ0 · θ0 = β we stop there, so suppose αγ0 · θ0 < β, and in fact

αγ0 · θ0 < β < αγ0 · (θ0 + 1) = αγ0 · θ0 + αγ0 (**)

by maximality of θ0.
Now β = αγ0 · θ0 + δ0 for some δ0, and we know δ0 < αγ0 because of (**).
What we have proved is that, given ordinals α < β, we can express β as

αγ0 · θ0 + δ0 with γ0 and θ0 maximal. If δ0 < α we stop. However if δ0 > α we
continue, by attacking δ0 with the normal function γ 7→ αγ .

What happens if we do this? We then have δ = αγ1 · θ1 + δ1, which is to say

β = αγ0 · θ0 + αγ1 · θ1 + δ1

One thing we can be sure of is that γ0 > γ1. This follows from the maximality
of θ0.

16



We now go back and repeat the process, this time with δ1 and α rather than
β and α.

Therefore, when we repeat the process to obtain:

β = αγ0 · θ0 + αγ1 · θ1 + αγ2 · θ2 + δ3

and so on:

β = αγ0 · θ0 + αγ1 · θ1 + αγ2 · θ2 + . . . αγn · θn + . . .

Now we do know that this process must terminate, because the sequence of
ordinals {γ0 > γ1 > γ2 > . . . γn . . .} is a descending sequence of ordinals and
must be finite, because <On is wellfounded.

So we have proved this:

THEOREM 19 For all α and β there are γ0 > . . . > γn and θ0 . . . θn with
θi < α for each i, such that

β = αγ0 · θ0 + αγ1 · θ1 + αγ2 · θ2 + . . . αγn · θn

In particular, if α = ω all the θi are finite. Since every finite ordinal is a sum
1 + 1 + 1 + . . . this means that every ordinal is a sum of a decreasing finite
sequence of powers of ω.

Quite how useful this fact is when dealing with an arbitrary ordinal β will
depend on β. After all, if β = ωβ then—if we run the algorithm with ω and
β—all Cantor’s normal form theorem will tell us is that this is, indeed, the case.
Ordinals β s.t. β = ωβ are around in plenty. They are called ε-numbers. They
are moderately important because if β is an ε-number then the ordinals below
β are closed under exponentiation. The smallest ε-number is called ‘ε0’. For the
moment what concerns us about ε0 is that if we look at the proof of Cantor’s
Normal Form theorem in the case where β is an ordinal below ε0 and α = ω
the result is something sensible. This is because, ε0 being the least fixed point
of α 7→ ωα, if we apply the technique of remark 17 to some α < ε0 the output
of this process must be an expression containing ordinals below α. Say something

about doing it
recursively to
the exponents

Now we must ask a very mathematical question, one that might have oc-
curred to you already. On what features of multiplication, exponentiation
and addition does this construction actually rely? Suppose we have a family
〈fi : i ∈ On〉 of functions of two arguments defined in the manner of definition
16 so that

fn+1(α, γ + 1) = fn(fn+1(α, γ), α). (1)

(and we require γ 7→ fn+1(α, γ) to be continuous at limit γ. We’ll worry
later about what to do when the subscript is limit!).

Suppose we want to express a given β in terms of a given α and n. What do
we need? We want the various fn to be normal in at least one argument. That
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is to say, for each n and every ζ, the function τ 7→ fn(ζ, τ) must be normal.
That way we can be sure—to return to our given β, α and n—that there is a
last γ so that

fn(α, γ) ≤ β

which is to say, there is a γ so that

fn(α, γ) ≤ β < fn(α, γ + 1)

Of course if fn(α, γ) = β we stop. Otherwise we have

fn(α, γ) < β < fn(α, γ + 1) = fn−1(fn(α, γ), α)

Now, by normality of ζ 7→ fn−1((fn(α, γ), ζ), there will be a last δ such that

fn−1((fn(α, γ), δ) ≤ β

and we repeat the process.
Notice that addition, multiplication and exponentiation are related as suc-

cessive members of precisely this kind of sequence of functions:

f0(α, β) := α + 1

f1(α, β) := α + β

f2(α, β) := α · β

f3(α, β) := αβ

So the definitions from definition 16 give rise to a system of ordinal notations.

EXERCISE 4 Use Cantor Normal Forms to show that every ordinal can be
expressed as a sum of powers of 2.

The first nontrivial result we saw that involved exponentiation was Cantor’s
normal form theorem, theorem 18. It made us think about ordinals like ωn

and ωω. It would be nice to have natural examples of well-orderings of lengths
other than ω. IN× IN ordered lexicographically is of length ω2. And, in general,
INn ordered lexicographically is of length ωn. We can well-order the set of all
finite lists of natural numbers to a longer length than this by a variant of the
lexicographic ordering, but the definition is forgettable because of complications
that have to do with deciding how to compare lists of different lengths. In
some ways a simpler way to present these ordinals is through well-orderings of
polynomials by dominance.

DEFINITION 20 f dominates g if, for all sufficiently large n, f(n) > g(n).
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Consider the quadratics x 7→ (ax2 + bx + c) and order them by dominance.
It is fairly clear that x 7→ (ax2 + bx+ c) is dominated by x 7→ (a′x2 + b′x+ c′) iff
〈a, b, c〉 comes below 〈a′, b′, c′〉 in the lexicographic order of IN× IN× IN. So the
set of quadratics, ordered by dominance, is of length ω3. In fact, the analogue
of this holds for polynomials of higher degree as well: the set of polynomials
of degree n, ordered by dominance, is of length ωn+1. Finally, the set of all
polynomials (ordered by dominance) will be of order ω + ω2 + ω3 · · · + ωn · · · .
What is this ordinal? Since 1+ω = ω it follows that 1+ω copies of anything is
the same length as ω copies of whatever it was, so in particular ωn +ωn+1 = ωn.
Given this, the sum is simply the sup of all these ordinals, which, by definition,
is ωω. Of course we could have got straight the definition of the well-ordering Could say a

bit more about
this

of finite sequences of natural numbers for another presentation of ωω, but the
advantage of this version is that it can be easily upgraded. Let us call this
family of polynomials in one variable the set of polynomials of rank 1 (to give it
a name). Now consider the set of polynomials in one variable with coefficients
in IN whose exponents are polynomials of rank 1. An example would be

xx3+x + x200 + 137 · x3.

These will be the polynomials of rank 2. If you order these by dominance you
obtain a wellorder of length ωωω

. Similarly an example of a poly of rank 3 would
be

xxx+x3+x + xx50
+ x200 + 137 · x3.

If we wellorder by dominance the set of all polynomials in one variable of finite
rank we find it is of length ε0.

1.7 The Veblen Hierarchy

The following old tripos question (which had an afterlife on PTJ’s example sheet
4 for Part II Set theory and Logic) can be profitably reviewed here.

EXERCISE 5 (Tripos IIA 1995 Paper 4 question 8, modified).
Let P = 〈P,≤〉 and Q = 〈Q,≤〉 be chain-complete posets with least elements,

and let h : P × Q → P × Q be a map which is order-preserving with respect
to the pointwise product ordering. Let the two components of the ordered pair
h(x, y) be h1(x, y) and h2(x, y) respectively.

1. Show that, for each fixed x ∈ P , the mapping gx : Q → Q defined by
gx(y) = h2(x, y) is order-preserving. Let m(x) be its least fixed point.

2. Show that the map f : P → P defined by f(x) = h1(x,m(x)) is order-
preserving. Let x0 be its least fixed point.

3. Show that 〈x0,m(x0)〉 is the least fixed point of h.

Stuff to fit in:
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In this section we consider functions that enumerate fixed points. We obtain
fixed points by iteration but we need regularity of ω1 to make sure we don’t
disappear off the end.

Let Veb of f be the function that enumerates the fixed points of f . What
is Vebλ f (ζ) to be? Presumably Sup({Vebα fζ : α < λ}. But be careful!
The ζth fixed point of g could easily be less than the first fixed point of Veb g.
Thus we could find that Vebλ f (ζ) could easily be equal to Vebλ f (ζ + 1).
We have to hit this function with Veb to obtain a normal function. Harold says
we should consider what he calls fruitful functions. They lack the strictness
condition.

Let us return to lemma 15, and consider the more rapidly growing sequence
of functions that it reveals to us. We can define a sequence of clubsets as follows.
P (0) is the set of ordinals of the form ω ·α, and6 α 7→ φ(0, α) is the function that
enumerates P (0). Thereafter P (α + 1) is the set of fixed points of β 7→ φ(α, β),
and β 7→ φ(α+1, β) (sometimes written ‘φα+1’) is the function that enumerates
Pα+1. At limits P (λ) =:

⋂
{P (ζ) : ζ < λ} and β 7→ φ(λ, β) (sometimes written

‘φλ’) is the function that enumerates Pλ.
Note the following:

1. All the P (α) are club.

2. For each α there seems to be an ordinal Pα such that P (α) = {Pα · ζ :
ζ ∈ On}. If this is correct then the additive normal form alleged in the
literature is easily explained!

3. {min(P (α)) : α ∈ On} appears to be club;

4. Should we here be thinking about diagonal intersections...?

Now we can try to rerun the proof of the Cantor Normal Form theorem.
Suppose we are given an ordinal α, and we want a notation for it in terms

of the φs. There will be a last ζ (call it ζ0) such that P (ζ) contains an ordinal
≤ α. If φ(ζ0, 0) (which is the first member of P (ζ0)) is equal to α, we stop. If
it isn’t, we consider the normal function β 7→ φ(ζ0, β). By normality there is a
last β (call it β0) such that φ(ζ0, β0) ≤ α. If φ(ζ0, β0) = α we stop. Otherwise
we have φ(ζ0, β0) < α < φ(ζ0, β0 + 1).

How do we get from φ(ζ0, β0) to α. We know that α is below the next fixed
point above φ(ζ0, β0), which is of course φ(ζ0, β0+1). But note that φ(ζ0, β0+1)
is the sup of ω iterates of more work

needed here[should perhaps bear in mind that the notion of critical ordinal is tied specf-
ically to exponentiation rather than any other of the functions that are normal
in one variable.]

Young Peter sez:
Given γ ∈ On
∃ last α0 φα0(1) ≤ γ < φα0+1(1)

6I think in the literature we start with exponents of ω but a slow start makes it easier to
see what is going on!
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and
∃ last β0 φα0(β0) ≤ γ < φα0(β0 + 1)
So (∀α′ < α)(φα0(β0) ∈ Pα′)
So its a fixed point! In particular
(∀α′ < α)(φα′(φα0(β0)) = φα0(β0))
So
∃ last α1 φα1(φα0((β0) + 1)) ≤ γ < φα1+1(φα0((β0) + 1))
and
∃ last β1 φα1(φα0((β0) + β1)) ≤ γ < φα1+1(φα0((β0) + β1 + 1))
I suspect the theorem in Veblen must be:
(∀α < Γ0)(∃β1 . . . βn < α)(∃γ1 . . . γn < α)(α = φ(β1, γ1) + φ(β2, γ) +

· · ·φ(βn, γn))

2 Fundamental sequences and fast-growing func-
tions

My point of departure here is an exercise that my friend and colleague Peter
Johnstone gives to the third-year logic students here at Cambridge: prove that
for every countable ordinal α there is a set of reals which is of order type α in
the inherited order. The students all try to do this by induction on α. This
seems the obvious thing to do, but it is fraught with difficulties. Indeed it is
precisely those difficulties which will be our concern here. So let me start by
giving the proof that the students never think of, but which is in fact much
easier.

Let α be an arbitrary countable linear order type (it doesn’t even have to be
an ordinal). Concatenate α copies of 〈Q, 0〉 (the rationals as an ordered set with
a designated constant.) This structure is a dense linear order with a family of
designated constants forming a subset of order-type α. But the ordering formed
by discarding the designated constants is a countable dense total order and is
therfore isomorphic to the rationals. Therefore every countable linear order type
embeds in the rationals. In particular, every countable ordinal embeds into the
rationals and therefore into the reals.

[we can simplify this by using a “forth” construction]
So we know it can be done. Secure therefore in that knowledge, we can

afford to try doing it the hard way.
We will show how to construct, for arbitrarily large countable ordinals α,

an order-preserving map fα from the ordinals below α into [0,∞)—and i think
we want the range of fα to be unbounded whenever α is limit. Indeed we
probably want the map to be continuous in the sense of the order topology on
the ordinals. That is to say, if λ is a limit ordinal below α then fα(λ) is the lub
of fα“{β : β < λ}. A nice enough construction will probably make this happen
automatically.

The obvious candidate for fω is the function that sends the ordinal number
n to the real number n. Thereafter we have two tricks we can use. If we
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have fα we can construct fα·ω by “squashing” the range of fα down on [0, 1) by
composing with 2

π tan−1 and then making copies to put in each interval [n, n+1),
and concatenating them. To be slightly less hand-wavy about it, let Aα be the
range of fα, then fα·ω is the function that enumerates the points in⋃

n∈IN

{n + (
2
π

tan−1)“Aα}

(where the notation ‘n+X’ of course denotes {n+x : x ∈ X}.) If α is an ordinal
that cannot be reached by this method we find an ω-sequence α0 < α1 . . . whose
sup is α and compress the ranges of the fαi into the intervals [i, i + 1), thus:⋃

n∈IN

{n + (
2
π

tan−1)“Aαn
}

Let us suppose that we have such a family 〈fα : α < ω1〉. Fix a countable
ordinal ζ and consider the sequence 〈fγ(ζ) : γ > ζ〉. It would be natural to
expect this to be a non-increasing sequence of reals. After all, the more ordinals
you squeeze into the domain of an f , the harder you have to press down on its
values to fit all the arguments in. But you’d be wrong! Suppose that

(∀γ < γ′ < ω1)(∀ζ < ω1)(fγ(ζ) ≥ fγ′(ζ)). (2)

Then, for each ζ < ω1, the sequence 〈fγ(ζ) : γ > ζ〉 of values given to ζ
must be eventually constant. For if it is not eventually constant then it has
cf(ω1) = ω1 decrements, and we would have a sequence of reals of length ω∗1 in
the inherited order, and this is known to be impossible.

So there is an eventually constant value given to ζ, which we shall write
‘f∞(ζ)’. But now we have α < β → f∞(α) < f∞(β). (We really do have ‘<’
not merely ≤’ in the consequent: suppose f∞(α) = f∞(β) happened for some
α and β; then for sufficiently large γ we would have fγ(α) = fγ(β) which is
impossible because fγ is injective). This means that f∞ embeds the countable
ordinals into IR in an order-preserving way, and this is impossible for the same
reasons.

So we conclude that the function 〈α, β〉 7→ fα(β) is not reliably decreasing
in its second argument.

So what can possibly have gone wrong? Surely any sensible allocation of
maps to limit ordinals will be well-behaved in the sense that it obeys (2)? Let
us step back a bit and introduce a new gadget, one which has been lurking in
the background all along.

2.1 Fundamental sequences

DEFINITION 21

A fundamental sequence for a (countable) ordinal α is an ω-sequence of
ordinals whose supremum is α.
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We will equivocate harmlessly between thinking of fundamental sequences
as wellorderings and thinking of them as strictly increasing functions from IN
into the set of countable limit ordinals.

We will start by proving some facts about fundamental sequences.
Theorem 11 told us that every countable limit ordinal has cofinality ω. This

is of course just the same as saying that every countable ordinal has a funda-
mental sequence.

DEFINITION 22

A family F is a function sending each limit ordinal in some given initial
segment of the second number class to a fundamental sequence for that ordinal.

How do we obtain families of fundamental sequences? Suppose the order type
of the limit ordinals below α is successor, so α = β + ω. In those circumstances
the obvious choice for a fundamental sequence for α is 〈β + n : n < ω〉. So far so
good. Now suppose in contrast that the limit ordinals below α form a sequence
of order type β for some limit ordinal β < α. That is to say, there is a function
g from {ζ : ζ < β} to the set of limit ordinals below α. But if there is also a
fundamental sequence f for β, then g · f will be a fundamental sequence for α.

This last step works as long as the order type of the set of limit ordinals below
α is less than α. If it isn’t then one has to do something slightly more clever. If
we consider the ordinals that are fixed points for the function that enumerates
the limit ordinals—which is the problematic case we have just identified—what
might this clever thing be? The function that enumerates the limit ordinals is
α 7→ ω · α. Let’s keep our feet on the ground for the moment by considering its
first fixed point, which is ωω. A fixed point ≥ α for a normal function f can be
obtained as sup {fn(α) : n ∈ IN}. So ωω is immediately presented to us as the
sup of {ωn : n ∈ IN} and this gives us a fundamental sequence for ωω.

The hope is that there will always be some generalisation of this construc-
tion however far out we go. If F is a normal function On→ On then whenever
〈βn : n ∈ IN〉 is a fundamental sequence for β then 〈F (βn) : n ∈ IN〉 is a funda-
mental sequence for F (β). We will return to this later.

We have just seen how the construction of a fundamental sequence for β
needs as input a bijection between IN and the set of ordinals below β. In fact
we can refine the proof of theorem 11 by exhibiting an algorithm that takes a
bijection between IN and the ordinals below β (or takes a wellordering of IN
of length β) and returns a family of fundamental sequences for limit ordinals
below β. Similarly there is an algorithm that takes a family of fundamental
sequences for the ordinals below β and returns a bjiecton between IN and the
set of ordinals below β. (Really one should say that this algorithm accepts
and outputs notations for these objects rather than the objects themselves.
The notations are genuine finite objects and we can compute with them. A
countable ordinal is not on the face of it a finite object: curiosity about how
far one can go in thinking of countable ordinals as finite objects is the energy
driving interest in the material in this tutorial.)
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THEOREM 23
There is a natural map that takes a wellordering of IN of length α and returns a
family of fundamental sequences for the limit ordinals below α—and vice versa.

Proof:
This is a generalisation of theorem 11.
(i) Left-to-right
Suppose we have a wellordering <α of the naturals to length α; let β be an

arbitrary limit ordinal below α. We will find a sequence 〈bn : n ∈ IN〉 of natural
numbers which is of length ω according to <α, and whose sup in that order is
the βth element of 〈IN, <α〉. We define b0 to be the <IN-least natural number
in that unique initial segment of 〈IN, <α〉 that is of length β. Thereafter bn+1 is
to be the <IN-least natural number that belongs to that unique initial segment
of 〈IN, <α〉 that is of length β and is >α bn.

How do we know that the upper bound of this sequence is the βth element
of 〈IN, <α〉? By construction the set {bn : n ∈ IN} is unbounded in <IN. So if
n is a natural number that lies above the (≤α)-sup of {bn : n ∈ IN} but is still
below the βth element then it is <IN terminally many of the bn, and should have
been chosen. Now we take βn to be the length of the initial segment of 〈IN, <α〉
bounded by bn.

Clearly we can do this simultaneously for all limit ordinals β < α.
(ii) Right-to-left
We want to be able to construct a bijection between IN and the ordinals

below β on being given a family of fundamental sequences of limit ordinals
below β.

The idea behind this proof is that the availability of fundamental sequences
for limit ordinals below β enables us to give—in a uniform way—a finite de-
scription of any ordinal below β. Every infinite set of finite strings over a finite
alphabet is demonstrably countable. Totally order the alphabet; then order the
set of finite strings colex. It will be of length ω, as will any of its infinite subsets.
So how do we get a finite notation for an arbitrary ζ < β? Let {β0,n : n ∈ IN}
be the fundamental sequence for β. Consider the first member of {β0,n : n ∈ IN}
that is ≥ ζ. This is β0,n0 , say. Record the n0 If this βn is actually equal to ζ
then HALT, else step down from this ordinal to the last limit ordinal below it
(which for the moment we will call ‘α’) and record the suffix ‘i’ such that it was
β0,i. (We don’t need to record the decrement, and in any case if the fundamen-
tal sequence for α are sensible the αi will be limit ordinals unless α = ω · (γ +n)
for some n < ω). Now let {β1,n : n ∈ IN} be the fundamental sequence for α.
Consider the first member of {β1,n : n ∈ IN} that is ≥ ζ. If this β1,n is actually
equal to ζ then record the n and HALT. Else step down from this ordinal to
the last limit ordinal below it (which for the moment we will call ‘α’ as before)
and record the suffix ‘j’ such that it was β1,j . . . (As before we do not need to
record the decrement). Eventually we will find ourselves a finite distance above
a point of a fundamental sequence and this time we do record the decrement. I think this

has become
garbled and
should be
rewritten

By this procedure we build a sequence of natural numbers. This sequence
is going to have to be finite if this construction is to be of any use to us. The
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reason why it will be finite is that the sequence of ordinals that were named ‘α’
at any stage of this process form a strictly descending sequence of ordinals and
so must be finite.

So we have coded every ordinal below β by a finite string of symbols, and
thence—using standard methods—by a natural number.

Perhaps we should explain how, with the help of this notation for ζ, we
can navigate our way thither from 0. Given a sequence s for ζ we recover ζ as
follows. First approximation is βs(1). Step down to the last limit ordinal below
βs(1). Second approximation is the s(2)th member of the fundamental sequence
for the last limit ordinal below βs(1). The last member of s (that is, s(|S|)) tells
us what natural number to subtract from the approximation-in-hand.

To do this we think of the family as a set of ordered pairs 〈s, s′〉 of these
finite sequences where (the ordinal notated by s) < (the ordinal notated by s′).

REMARK 24 There is no definable family of fundamental sequences for all
α < ω1.

Proof: Let F be a family of fundamental sequences for all countable limit ordi-
nals. We will show that F cannot be definable.

We define by recursion on the second number class a sequence 〈Wα : α < ω1〉
of wellorderings of IN (so each is a subset of IN×IN). We fix once for all a bijection
IN× IN←→ IN.

0 is easy; successor steps are easy; at a limit λ use the fundamental sequence
Fλ, to get the codes WFλn you have already formed for each Fλn and then
piece them all together one after the other to get a wellordering of IN× IN. Use
the bijection IN×IN←→ IN to turn this into a code for Σn∈INFλn, which we will
call λ′. Here we have to be careful, because the sum of a sequence of ordinals
might be bigger than its supremum. What we want is a wellordering of IN to
the sup of this set of ordinals (which is λ) not its sum (which is λ′). Suppose
λ′ > λ. We delete from IN those naturals that get sent to addresses after λ, and
we delete ordered pairs containing them from the graph of the wellordering of IN
to length λ′. What’s left is a wellordering of a proper subset IN′ ⊂ IN to length
λ. But there is an obvious canonical bijection between IN′ and IN, and we can
use it to copy the wellordering of IN′ over to a wellordering of IN to length λ as
desired. None of this uses any AC.

This shows that if we have a function F assigning a fundamental sequence
to every countable limit ordinal, then we have a function assigning to each
countable ordinal a wellordering of IN× IN of that length, and this new function
can be defined in terms of F . But (as we saw on page 11) any wellordering of
IN× IN is coded by a real number so the existence of the new function assigning a
fundamental sequence to every countable ordinal implies ℵ1 ≤ 2ℵ0 . It is known
that this is independent of ZF.

This doesn’t mean that there can be no family F of fundamental sequences
for all countable limit ordinals, but it does mean that no such family can be
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definable; if it were, we would have an outright proof that ℵ1 ≤ 2ℵ0 .

2.2 Fast-growing hierarchies

Our motive for considering fundamental sequences is that any family of fun-
damental sequences can be used to extend declarations of families of functions
IN→ IN into the transfinite in something like the following style.

The first person to spell out a fast-growing hierarchy seems to have been
Hardy [12]. His idea was that if you could extend a fast-growing hierarchy out
to all countable ordinals then you would have an injection of the second number
class into the reals. As we have just seen, this hope is vain.

DEFINITION 25 Suppose F is a family in the sense of definition 20. Then
we can declare

fF0 = some function or other;

fFα+1 =: do something to fα;

fFλ (n) =: f(F λ n)(n).

(Typically we will omit the ‘F ’ superscript).

There is also the (apparently) minor detail that in the process of con-
structing the embeddings fα from initial segments of the second number
class into the reals we exploit representations of countable ordinals as sums
of countably many smaller ordinals whereas in the definition of the fast-
growing hierarchies we exploit fundamental sequences—which are repre-
sentations of limit ordinals as suprema of ω-sequences of small ordinals. I
don’t think the difference matters, but one never knows.

Declarations in the style of definition 24 are typically used to generate fam-
ilies of functions where fα dominates fβ whenever β < α.

At successor stages this will be taken care of by the second clause and the
purpose of the third clause is to ensure that fλ dominates (“majorises”) fβ with
β < λ for λ limit. Naturally one expects that if f0 was strictly increasing then
all the later fα will be too—and that one will be able to prove this by transfinite
induction. However to arrange for strict monotonicity of all the fα it turns out
one needs a condition on the family F of fundamental sequences which we will
now investigate.

[HOLE Stuff to fit in
Let F be a counted family of functions, equipped with F : IN → F . Then

we can define a supremum f∞ of F by

f∞(n) = sup{(F i n) + 1 : i ≤ n}

We need this in the case where {F} is {fβ : β < α} ]
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2.2.1 Schmidt Coherence
Mark Ry-
ten sez that
Schmidt con-
strux works
only where
fα+1 is point-
wise bigger
than fα and
guarantees
pointwise
domination
over Schmidt
relatives.

The idea is to prove by induction on α that fα is monotone increasing and
dominates all earlier fβ . Let’s get the dominance out of the way first. Given
the induction hypothesis it’s easy to prove that fα dominates all earlier fβ . The
successor case is obvious; for the limit case suppose fλi is strictly increasing for
each i ∈ IN and that later fs dominate earlier fs. If fλ is n 7→ fλn(n) then it
dominates every fλi . NB denies this:

says one needs
Schmidt-
coherence even
for this!

Why isn’t strict monotonicity obvious too? If fα is strictly increasing so is
fα+1. The hard case is that of limit ordinals. Let λ be limit and 〈λn : n ∈ IN〉
the fundamental sequence for it.

We want

fλ(n) < fλ(n + 1). This holds iff

fλn
(n) < fλn+1(n + 1). Now we do at least have

fλn
(n) < fλn

(n + 1)

because fλn is strictly increasing by induction hypothesis. So to complete the
proof it will suffice to show

fλn(n + 1) < fλn+1(n + 1)

which will follow if (∀λ∀n)(succ(λn, λn+1)) where succ(α, β) is:

α < β → (∀m)(fα(m) < fβ(m)).

However when β is a limit we can be sure of the consequent of succ(α, β)
only for sufficiently large m. The construction of the fαs ensures that succ(α, β)
holds if β = α + 1 or if β is limit and α = β0. To be sure of succ(α, β) when
α < β are members of a fundamental sequence we need to specify that they are
related by the transitive closure of the union of these two relations. A family of
fundamental sequences satisfying this condition is Schmidt-coherent.

Formally:

DEFINITION 26 Let the family F : ∆→ ∆ω be an assignment of fundamental
sequences to an initial segment ∆ of the second number class. Let <F be the
strict partial order which is the transitive closure of β <F β +1 and (F β) 0 <F
β. (Schmidt [16] calls <F the step-down relation of F .)

Then
F is Schmidt-coherent iff

(∀λ ∈ ∆)(λ limit → (∀n ∈ IN)((F λ n) <F (F λ (n + 1)))).

(Schmidt calls these ‘built-up’ rather than ‘coherent’.)
It is not hard to see that, for any F , <F is a wellfounded (upward-branching)

tree and that all paths are of length ω. One steps down at limit ordinals λ by
leaping downwards to F λ 0—the first member of the fundamental sequence for
λ, aka λ0. At successor steps one subtracts one. The way one steps down is

27



uniquely determined by where one is not by where one starts from. This means
that two descending paths that meet anywhere thereafter remain coincident.

Schmidt-coherence is equivalent to the condition that every fundamental
sequence lies entirely within one branch of the tree.

EXERCISE 6 Define the natural assignment of fundamental sequences to or-
dinals below ε0 and check that it is Schmidt-coherent.

Do the same for the ordinals below Γ0.

This completes the proof of:

THEOREM 27 (Schmidt [16] theorem 1)

If F is a Schmidt-coherent family of fundamental sequences then every func-
tion in the fast growing hierarchy over F is monotone and strictly increasing.

Proof: The definition of Schmidt-coherence was cooked up precisely to make
this work.

LEMMA 28 If F is Schmidt-coherent, λ is limit and n ∈ IN then Fλ,n, defined
by

Fλ,n λ m =: F λ (m + n); Fλ,n β m = F β m for other β

. . . is also Schmidt-coherent.

Proof: It will suffice to show that F λ 0 <Fβ,n λ. But—since F is Schmidt-
coherent we have F λ 0 <F λ. Hence—by the definition of Fβ,n—we have
Fβ,n λ 0 <Fβ,n Fβ,n λ n. But this last ordinal is the <Fβ,n -predecessor of λ,
whence F λ 0 <F F λ n <Fβ,n λ.

LEMMA 29 Let F be a Schmidt-coherent system of fundamental sequences for
∆ an initial segment of the second number class, and suppose α < β ∈ ∆. Then
there is a system F (α,β) of fundamental sequences7 for ∆ such that

1. F (α,β) is Schmidt-coherent;

2. α <F(α,β) β and

3. for all δ ≤ α we have F (α,β)δ = Fδ.

Proof:
(lifted brazenly from Schmidt [16])
We define a sequence 〈γn,Fn〉 as follows.
γ0 =: β, F0 =: F ;
Thereafter

7This is my notation not hers, and i’ve put in the brackets to make it less likely that readers
will confuse it with the “Fα,β”

28



• if γn = α then γn+1 =: α too, and Fn+1 =: Fn;

• if γn = δ + 1 > α then γn+1 =: δ and Fn+1 =: Fn;

• if γn > α and is a limit, and m is minimal such that Fγnm ≥ α then
γn+1 =: Fγnm and

• – if γ 6= γn then Fn+1γq =: Fnγq, and

– if γ = γn then Fn+1γq =: Fnγ(q + m).

Using lemma 27 it is easy to show that

• Fn is Schmidt-coherent,

• γn <Fn β or γn = β,

• Fnδ = Fδ for all δ < α,

• γn ≥ α.

Now 〈γn : n < ω〉 is a nonincreasing sequence, so is eventually constant, so
there is n0 ∈ IN such that γn0 = α. Set F (α,β) =: Fn0 .

LEMMA 30 Let F be a Schmidt-coherent system of fundamental sequences for
∆ an initial segment of the second number class, and let λ be the smallest limit
ordinal not in ∆. Then there is a Schmidt-coherent system F ′ of fundamental
sequences for ∆ ∪ {λ}.

Proof: Let 〈λn : n ∈ IN〉 be a fundamental sequence for λ. We define a se-
quence 〈Fn : n ∈ IN〉 by recursion as follows. F0 =: F and thereafter Fn+1 =:
(Fn)(λn,λn+1) as in 28. Now—by that lemma (itemwise!)—for each n ∈ IN we
have

1. Fn is Schmidt-coherent;

2. λn <Fn+1 λn+1;

3. Fnδ = Fn+mδ for all δ ≤ λn and m ∈ IN.

We can now set F ′β to be

• 〈λn : n ∈ IN〉 if β = λ;

• Fβ if β ≤ λ0;

• Fm+1β if λm < β ≤ λm+1.

F ′ obviously assigns fundamental sequences to everything in ∆ ∪ {λ}.
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THEOREM 31 (Schmidt [16] theorem 2)

Every proper initial segment of the second number class admits a Schmidt-
coherent family of fundamental sequences.

Proof:
We prove by induction on ‘α’ that the countable ordinals strictly below α

admit a Schmidt-coherent family.
The successor case is easy: if α is a successor of a successor, the assertion

follows from the induction hypothesis; if α is the successor of a limit it follows
from lemma 29 and the induction hypothesis.

So consider the case where α is limit.
Let 〈αn : n ∈ IN〉 be a fundamental sequence for α, and for each n ∈ IN set

σn =: Σm<nαm. Clearly α ≤ sup({σn : n ∈ IN}).
By the induction hypothesis for each n ∈ IN there is a Schmidt-coherent

family Fn for the ordinals below αn + 1. We now define a family F as follows:
Fγ m =:

• 0 if γ is zero or a successor;

• σn + (F(γ − σn)m) otherwise, where n is maximal so that σn < γ.

Now for all µ and ν such that σn < µ ≤ σn+1 and σn < ν ≤ σn+1 we
have µ <F µ ←→ (µ − σn) <Fn (ν − σn). Hence if γ is a limit ordinal and
σn < γ ≤ σn+1 then γ − σn is also a limit, and since Fn is Schmidt-coherent
we have F(γ − σn)m <Fn F(γ − σn)(m + 1) for each m ∈ IN. Thus Fγm =
σn + (F(γ − σn)m) <F σn + (F(γ − σn)(m + 1)) = Fγ(m + 1). So F is
Schmidt-coherent.

Can we omit ‘proper’ from the statement of theorem 30? We proved it
without any use of AC.

Rose says that theorem 30 is best possible, and credits Bachmann: Trans-
finite Zahlen Springer, 1967. I’m sceptical about this because he also says
that Schmidt, too, proves that it is best possible—and she doesn’t! what is this

Rose refer-
ence?

If it really is best possible, it’s presumably because a Schmidt-coherent
family for all countable ordinals would give us an embedding of ω1 into
the reals, or something like that. There can be long sequences (≥ ω1)
of functions with each function dominating all earlier functions, but they
don’t increase as fast as Wainer-Buchholtz.

We’ve managed to get this far on generalities that do not depend on the
precise declaration of the fast-growing hierarchy. The time has now come to be
specific. Let F be a Schmidt-coherent family of fundamental sequences.

The following seems to be popular: (Buchholtz-Wainer[3] refer to it merely
as ‘the’ fast-growing hierarchy!)

DEFINITION 32 (Buchholtz-Wainer)
The Fast-Growing Hierarchy
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f0(x) =: x + 1;

fα+1(x) =: fα
x+1(x);

fλ(x) = f(F λ x)(x).

The fast-growing hierarchy with finite subscripts is the Grzegorczyk hier-
archy.

The Hardy Hierarchy ([12]) is:

H0(x) =: x + 1;

Hα+1(x) =: Hα(x + 1);

Hλ(n) = H(F λ n)(n).

Just to reassure myself that i am in familiar surroundings i shall prove

REMARK 33 For α < ω, fα is primitive recursive.

Proof: Clearly true for α = 0. Define iter g so that iter(g, n) : m 7→ (gn(m))
by means of the following declaration:

iter(f, 0) m =: m; iter(f, (n + 1)) m =: f(iter(f, n) m)

we see that iter(g, n) is primitive recursive as long as g is. Then fα+1 : n 7→
(iter(fα, n + 1) n) is primitive recursive as long as fα is.

EXERCISE 7 Determine f0, f1 and f2.

EXERCISE 8 (Computer Science Tripos 1991:5:10)
Ackermann’s function is defined as follows:

A(0, y) =: y + 1; A(x + 1, 0) =: A(x, 1); A(x + 1, y + 1) =: A(x,A(x + 1, y))

For each n define
an(y) =: A(n, y).
Prove (∀y)(∀n ∈ IN)(an+1(y) = ay+1

n (1)).

Notice that a0(x) = f0(x) = x + 1.
Then by induction on the recursive datatype of primitive recursive functions

we prove that every primitive recursive function is dominated by all sufficiently
late an.

THEOREM 34 For every primitive recursive function f(~x, n) there is a con-
stant cf such that

(∀n∀~x)(f(~x, n) < A(cf ,max(n, ~x)))
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(In slang, every primitive recursive function is in O(Ackermann).)

EXERCISE 9 Complete the proof.

Notice that there cannot be a converse. This is because of the silly rea-
son that there are slowly growing functions that are inverses of rapidly growing
ones, and are therefore equally hard to compute. Try the computer science tripos
question 1994 paper 5 question 11 (at http://www.cl.cam.ac.uk/tripos/t-ComputationTheory.html)

Then A(n, n) diagonalises the an the way fω diagonalises the fn. So A(n, n)
is “at the same level” as fω. In fact if f is primitive recursive, then the cf of
theorem 33 is precisely the level of the fast-growing hierarchy that f belongs
to (I think!).

3 Consistency strength measured by ordinals

Any not conspicuously deficient set theory can of course prove the
existence of transfinite numbers without end, but this does not mean
getting them all. What is so characteristic of the transfinite is that
we then go on iterating the iteration, iterating the iteration of the
iterations, and so on, until somehow our apparatus buckles; and the
least transfinite number after the buckling of the apparatus is how
strong the apparatus was.

W.V.Quine: [15] pp 323-4

Maybe we should say something here about how the endeavour to achieve a
complete consistent system of arithmetic by transfinitely adding Gödel sentences
comes unstuck. Quite where it comes unstuck will presumably depend on the
strength of the original system. For PA it comes unstuck at ε0?

4 Some illumination from Nathan Bowler

Suppose we have an ordinal x that we want to describe. We begin analysing
it as for the Cantor normal form. So we pick a maximal y such that ωy ≤ x.
Then we pick a maximal n such that ωy · n ≤ x and a maximal z such that
ωy · n + z ≤ x. Now we can show in the usual way that:

• n < ω;

• z < x;

• x = ωy · n + z.

All of this is routine. The only thing we don’t yet control is y. We know that
y ≤ x, and so we are only in trouble if y = x. The traditional thing to do at
this point is to say “Our method has reached its limit. Let us give a name to
the least ordinal at which this problem can occur, say ε0, in order to get some
closure.”
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However, we have some very strong information about the places where this
trouble can happen. We must have y = ωy. That is, y is a fixed point of the
map φ0 : y 7→ ωy. So we simply enumerate the fixed points of φ0 by some
function φ1 and get a new expression for y as φ1(y′), say. This will certainly be
useful if we can guarantee that y′ < y, but of course we can’t.

But we can do the same trick again. If y is stroppy enough to equal y′ then
it must be φ2 of something, where φ2 enumerates the fixed points of φ1. And
we can keep going. At any stage, we simply enumerate the ordinals that have so
far been badly behaved. So, for example, at a limit ordinal λ, we are in trouble
iff φα(y) = y for all α < λ. So we choose φλ to enumerate the set of such y,
which is the intersection of the fixed point sets of all the φα for α < λ.

To summarise, we choose α maximal with the property that y is in the image
of φα. Then we have y = φα(y′) with y′ < y ≤ x. Now we control everything.
Except α. We are now in trouble if α = y. So we say “Our method has reached
its limit. Let us give a name to the least ordinal at which this problem can
occur, say Γ0, in order to get some closure.”

LEMMA 35 For any x less than Γ0 there exist n, α1, α2, . . .αn and β1, β2,
. . .βn with:

• φαi(βi) ≤ φαj (βj) for i ≤ j;

• αi < αi+1 and βi < αi (for all i);

• x = φαn(βn) + φαn−1(βn−1) + . . . + φα1(β1).

Proof: : By contradiction. Let x be minimal with no such representation. I
demonstrated above that we may find α, β, m and z with:

• α, β, z < x;

• m < ω;

• x = φα(β) ·m + z.

Now by minimality of x, we have a representation

z = φαn(βn) + φαn−1(βn−1) + . . . + φα1(β1).

So let n′ = n + m, and let αi = α and βi = β for n < i ≤ n′. We now have a
representation of x in the desired form.

Now, given two such expressions constructed in this canonical way, (that is,
so that no term of the form φα(β) occurs with φα(β) = β, we can easily say
which is the largest by the simple expedient of comparing corresponding terms
in the two expressions.

Note that the above argument is precisely the same as that used for the
Cantor normal form.
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Further correspondence

tf:

On the subject of Γ0: i’m still not happy. What is the normal form
for ωε0+2?

NB:

φ0(φφ0(0)(0) + φ0(0) + φ0(0))

tf:

I suppose i should now try to work out why. How does one get that
from the CNF algorithm?
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NB:

I have written the derivation out in painful detail. If you fight your
way through it then you should see how the extended algorithm
works.

Step 1 : Find the maximal y such that ωy ≤ ωε0+2, the maximal n such that
ωy · n ≤ ωε0+2 and the maximal z such that ωy · n + z ≤ ωε0+2. This is
fairly easy as we are given x in the form ωy. So we have y = ε0 + 2, n = 1
and z = 0. The expansion so far is ωε0+2. Not very enlightening yet.

Step 2 : Find the maximal α such that there is x with ωε0+2 = φα(x). We check:
ωε0+2 = φ0(ε0 + 2). Since also ε0 + 2 6= φ0(ε0 + 2), there is no such x for
α = 1. So we take α = 0 and x = ε0 +2. The expansion so far is φ0(ε0 +2)

Step 3 : Find the maximal y such that ωy ≤ ε0 + 2, the maximal n such that
ωy · n ≤ ε0 + 2 and the maximal z such that ωy · n + z ≤ ε0 + 2. Observe
that, since ε0 = ωε0 , we have y = ε0, n = 1 and z = 2. The expansion so
far is φ0(ωε0 + 2).

Step 4 : Find the maximal α such that there is x with ωε0 = φα(x). We check:
ωε0 = φ0(ε0) = φ1(0). Since also 0 6= φ1(0), there is no such x for α = 2.
So we take α = 1 and x = 0. The expansion so far is φ0(φ1(0) + 2).

Step 5 : Find the maximal y such that ωy ≤ 2, the maximal n such that ωy ·n ≤ 2
and the maximal z such that ωy · n + z ≤ 2. Trivially, y = 0, n = 2 and
z = 0. The expansion so far is φ0(φ1(0) + ω0 + ω0)

Step 6 : Find the maximal α such that there is x with ω0 = φα(x). We check:
ω0 = φ0(0). Since also 0 6= φ0(0), there is no such x for α = 1. So we take
α = 0 and x = 0 The expansion so far is φ0(φ1(0) + φ0(0) + φ0(0))

Step 7 : Find the maximal y such that ωy ≤ 1, the maximal n such that ωy ·n ≤ 1
and the maximal z such that ωy · n + z ≤ 1. Trivially, y = 0, n = 1 and
z = 0. The expansion so far is φ0(φω0(0) + φ0(0) + φ0(0))

Step 8 : Find the maximal α such that there is x with ω0 = φα(x). We check:
ω0 = φ0(0). Since also 0 6= φ0(0), there is no such x for α = 1. So we take
α = 0 and x = 0. The expansion so far is φ0(φφ0(0)(0) + φ0(0) + φ0(0)).
We are done.
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Material which will eventually turn into a proper
definition of the ordinals as a higher-order rec-
type

This material
on finding the
correct decla-
ration of On
as a recursive
datatype is
still experi-
mental.

We define On, <On and =On by a simultaneous recursion

DEFINITION 36 0 is an ordinal;
If α is an ordinal, so is succ(α);
If X is a set of ordinals, then sup(X) is an ordinal;
0 ≤ α;
α < succ(α);
(∀α ∈ X)(∃β ∈ Y )(α ≤ β)→sup(X) ≤ sup(Y );
α ∈ X → α ≤sup(X);

and various boring axioms to make trivial facts obvious:

α ≤ β → β ≤ α→ α = β;
α ≤ β → β ≤ γ → α ≤ γ;
α < β → β < γ → α < γ;
α = β → β = γ → α = γ;
α < β → β < α→ ⊥;
α = β → β = α;
α = β → α ≤ β;
α < β → α ≤ β.
(∀α ∈ S1)(∃β ∈ S2)(α ≤ β)→ sup(S1) ≤ sup(S2)

(I omit the—even more boring—obvious axioms to the effect that = is a con-
gruence relation for the other relations. Omitted too—for the moment—are ax-
ioms to characterise sup: I’m thinking of things like (∀α)(∀S ⊂ On)((α <sup(S))→
(∃β ∈ S)(α ≤ β)) which i think is Horn.)
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In the above definition ≤ and < are a pair of partial order/strict partial
order. I have exploited both notations in order to ensure that all the clauses in
the declaration are Horn and we thereby have a legitimate datatype declaration.

The strict order < (I have omitted the subscript) is the engendering rela-
tion of the datatype of ordinals. It is wellfounded for the usual reasons.

Once one has equipped On with a wellorder, one can use ideas like that of
order topology. Conveniently and unsurprisingly it turns out that this gives us
the same notion of limit as we presupposed in the extra constructor sup. The
notion of continuous function will of course be important to us.

H I A T U S
Or do we define ≤ and On by a simultaneous recursion and define = as ≤≥?

Appendix 1: The engendering relation on On is a
wellorder

THEOREM 37 <On is a wellorder.

Proof:
The engendering relation on ordinals is a wellfounded partial order—for the

usual reasons; the hard part is showing that it is a total order.
The proof was discovered simultaneously and independently by Witt [21] and

Weil [2] (tho’ neither of these two gentlemen would have described it in those
terms8) and was used by them to establish that every inflationary function f
from a chain-complete poset with a bottom element into itself has a fixed point.
The proof proceeds by considering the inductively defined set containing the
bottom element, closed under f and suprema of chains. The part of the proof
that concerns us here is the proof that this object is a chain. This of course is
simply a proof that the ordinals are wellordered by <. All I have done is recast
their argument as a proof of this fact about ordinals.

Let us say an ordinal α is normal if

(∀β)(β < α→ succ(β) ≤ α).

If α is normal, then we prove by induction on ‘β’ that

(∀β)(β ≤ α ∨ succ(α) ≤ β).

That is to say, we show that, if α is normal, then

{β : β ≤ α ∨ succ(α) ≤ β}

contains 0 and is closed under succ and sups of chains and is therefore a superset
of On. Let us deal with each of these in turn.

1. (Contains 0); By stipulation.

8Thanks to Peter Johnstone for showing me this material.
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2. (Closed under succ); If γ ∈ {β : β ≤ α ∨ succ(α) ≤ β}, then either

(a) γ < α, in which case succ(γ) ≤ α by normality of α and succ(γ) ∈
{β : β ≤ α ∨ succ(α) ≤ β}; or

(b) γ = α, in which case succ(α) ≤ succ(γ) so succ(γ) ∈ {β : β ≤
α ∨ succ(α) ≤ β}; or

(c) succ(α) ≤ γ, in which case succ(α) ≤ succ(γ) (because succ is
inflationary) and succ(β) ∈ {β : β ≤ α ∨ succ(α) ≤ β}.

3. (Closed under sups of chains); Let S ⊆ {β : β ≤ α ∨ succ(α) ≤ β} be
a chain. If (∀β ∈ S)(β ≤ α), then sup(S) ≤ α. On the other hand, if
there is β ∈ S s.t. β 6≤ α, we have succ(α) ≤ β (by normality of α); so
sup(S) ≥ succ(α) and sup(S) ∈ {β : β ≤ α ∨ succ(α) ≤ β}.

Next we show that everything in On is normal. Naturally we do this by
induction: the set of normal ordinals will contain 0 and be closed under succ
and sups of chains.

1. (Contains 0); 0 is clearly normal.

2. (Closed under succ); Suppose α ∈ {γ : (∀β)(β < γ → succ(β) ≤ γ}.
We will show (∀β)(β < succ(α) → succ(β) ≤ succ(α)). So assume
β < succ(α). This gives β ≤ α by normality of α. If β = α, we certainly
have succ(β) ≤ succ(α), as desired, and if β < α, we have succ(β) ≤
α ≤ succ(α).

3. (Closed under sups of chains); Suppose S ⊆ {γ : (∀β ∈ On)(β < γ →
succ(β) ≤ γ)} is a chain. If β < sup(S), we cannot have (∀γ ∈ S)(β ≥
succ(γ)) for otherwise (∀γ ∈ S)(β ≥ γ) (by transitivity of < and inflation-
arity of succ), so for at least one γ ∈ S we have β ≤ γ. If β < γ, we have
succ(β) ≤ γ ≤ sup(S) since γ is normal. If β = γ, then γ is not the great-
est element of S, so in S there is γ′ > γ and then succ(β) ≤ γ′ ≤ sup(S)
by normality of γ′.

If α and β are two things in On, we have β ≤ α ∨ succ(α) ≤ β by normality
of α, so the second disjunct implies α ≤ β, whence β ≤ α ∨ α ≤ β. So On is a
chain as promised,

5 Answers to selected exercises

Exercise 4

PTJ comments:
[The original question worked with ω-continuous functions, for which one has a
much easier proof of the existence of fixed points, but the question itself becomes
harder because you have to verify that every function in sight is ω-continuous. As
it stands, it should be pretty easy, except for the proof that m is order-preserving
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(needed to show that f is order-preserving): for this, observe that if x1 ≤ x2

then m(x2) is a ‘post-fixed point’ of gx1 (that is, m(x2) ≥ gx1(m(x2))), and so
{y ∈ Q : y ≤ m(x2)} is a ‘closed set’ in the sense used in the construction of
the least fixed point m(x1) of gx1 .]

And my discussion. . .

1. Given x ∈ P , suppose y1 ≤ y2 ∈ Q. Then 〈x, y1〉 ≤ 〈x, y2〉 so h(〈x, y1〉) ≤
h(〈x, y2〉) so gx(y1) = h2(〈x, y1〉) ≤ h2(〈x, y2〉) = gx(y2), so gx is order-
preserving.

2. m is order-preserving. Proof: Suppose x1 ≤ x2 ∈ P . Set Y = {y ∈ Q : y ≤
m(x2)}. For y ∈ Y we have gx1(y) = h2(〈x1, y〉) ≤ h2(〈x2, y〉) = m(x2) so
gx1 acts on Y .

Now if C ⊆ Y is a chain then its sup is below m(x2) so Y is chain-complete,
whence gx1�Y has a fixed point y0 ∈ Y with m(x1) ≤ y0 ≤ m(x2) and m
is order-preserving.

Now suppose x1 ≤ x2 ∈ P again. Then 〈x1,m(x1)〉 ≤ 〈x1,m(x1)〉. So
f(x1) ≤ f(x2) and f is order-preserving.

3. h(x0,m(x0)) = 〈f(x0), gx0(m(x0))〉 = 〈x0,m(x0)〉 so 〈x0,m(x0)〉 is a fixed
point of h. Let 〈x, y〉 be the least fixed point of h. Then gx(y) = y so
y ≥ m(x).

4. Let Z = {〈a, b〉 ∈ P ×Q : 〈a, b〉 ≤ 〈x,m(x))〉}
For 〈a, b〉 ∈ X:

h(a, b) ≤ h(x,m(x)) ≤ 〈h1(x, y), h2(x,m(x))〉 = 〈x,m(x)〉 so h acts on
Z. Furthermore, Z is chain-complete and has a least element, similar to
claim above. So h has a fixed point 〈x′, y′〉 ∈ Z. Now 〈x, y〉 ≤ 〈x′, y′〉 ≤
〈x,m(x)〉. But 〈x, y〉 ≥ 〈x,m(x)〉 so 〈x, y〉 = 〈x,m(x)〉.
So x is a fixed point for f , whence x ≥ x0. But m is order-preserving so
y = m(x) ≥ m(x0). So 〈x, y〉 ≥ 〈x0,m(x0)〉 and 〈x0,m(x0)〉 is the least
fixed point of h.
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