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The consistency strength hierarchy

Natural axiomatic theories are well-ordered by consistency strength.

Ordinal analysis: assign recursive ordinals to theories as a
measurement of their consistency strength.

Beklemishev's method: iterate consistency statements over a base
theory until you reach the MY consequences of the target theory.

Why are natural theories amenable to such analysis?
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Martin's Conjecture

Natural Turing degrees are well-ordered by Turing reducibility.
0,0/,...,0%, ..., 0, ..., 0%, ...

Martin’s Conjecture: (AD) The non-constant degree invariant
functions are pre-well-ordered by the relation

“f(a) <71 g(a) for all a in a cone of Turing degrees.”

Moreover, the successor for this pre-well-ordering is induced by the
Turing jump.
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Our base theory is elementary arithmetic, EA, a subsystem of
arithmetic just strong enough for usual arithmetization of syntax.

We focus on recursive functions f that are monotonic, i.e.,
if EAE o — 1, then EAE f(p) — f().

Our goal is to show that ¢ — (@ A Con(y)) and its iterates are
canonical monotonic functions.
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We write ¢ 1 when EA F ¢ — 1) and say that ¢ implies .
We say that ¢ strictly implies 1) if

(i) ¢+ and

(i) either Y ¥ p or Y F L.

We write [p] = [¢] if o -1 and ¥ F .
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Between the identity and Con

Theorem (Montalban-W.)

Let f be monotonic. Suppose that for all o,
(i) © N Con(p) implies f(p),

(i) f(p) strictly implies .

Then for cofinally many true sentences ,

EAE f(p) <> (@ A Con(y)).

Corollary

There is no monotonic f such that for every ¢,
(i) ¢ N\ Con(yp) strictly implies f(yp) and

(ii) f(p) strictly implies .
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Monotonicity is essential

Can we weaken the condition of monotonicity, i.e.,
if EAF @ — 1, then EAF () = £(1),
to the condition of extensionality, i.e.,

if EAE o <> 1), then EAF (o) < f(¢)?

Theorem (Shavrukov—Visser)

There is an extensional f such that for all ¢,
(i) @ N Con(yp) strictly implies f(y) and
(ii) () strictly implies .
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Cut-free consistency

Theorem (Visser)

For all ¢, EA = Conce(Concr(p)) < Con(yp).

However, for all ¢ that prove the cut-elimination theorem,

EAE (¢ A Con(p)) <> (¢ A Concr(y)).

Similar considerations apply to the Friedman—Rathjen—Wiermann
notion of slow consistency.

Question: Does the lattice of M sentences enjoy uniform
monotonic density?
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lterates of Con

Given an elementary presentation of an ordinal «, we define the
iterates of Con as follows.

Con®(p) =T
ConPT(p) := Con(p A Con®(y))
Con*(p) 1= V3 < ACon®(y)

N.B. Con'(p) = Con(¢p).
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Generalizations to the effective transfinite

Theorem (Montalban-W.)

Let f be monotonic. Suppose that for all o,

(i) © N\ Con®*(p) implies f(y),

(ii) f(y) strictly implies ¢ A Con®(y) for all B < .
Then for cofinally many true sentences o,

EAE f(p) < (p A Con®(p)).

Corollary

There is no monotonic f such that for every ¢,
(i) ¢ N Con®() strictly implies f(p) and
(ii) f(y) strictly implies ¢ A Con®(y) for all B < .
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lterates of Con are inevitable

Theorem (Montalban-W.)

Let f be a monotonic function such that for every ¢,
(i) @ N\ Con"(p) implies f(y) and

(i) () implies .

Then for some ¢ and some k < n,

[f ()] = [ A Con* ()] # [L].
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The main theorem

Theorem (Montalban-W.)

Suppose f is monotonic and, for all p, f(p) € M. Then either
(i) for some ¢, (¢ A Con®(p)) ¥ f(p) or
(ii) for some 3 < o and @, [p A ()] = [ A Con®()] # [L].

The proof of this theorem involves Schmerl's technique of reflexive
induction in a seemingly essential way.
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The main theorem

Theorem (Montalban-W.)

Suppose f is monotonic and, for all , f(p) € M. Then either
(i) for some ¢, (@ A Con®(p)) ¥ f(p) or
(ii) for some 3 < o and @, [p A f(p)] = [ A Con®()] # [L].

The main thorem resembles the following theorem of Slaman and
Steel.

Theorem (Slaman-Steel)

Suppose f : 2 — 2¥ js Borel, order-preserving with respect to <,
and increasing on a cone. Then for any o < wj, either

(i) (x\*) < f(x)) on a cone or

(i) for some 8 < a, f(x) =7 x(¥) on a cone.

James Walsh On the inevitability of the consistency operator



The main theorem

Theorem (Montalban-W.)

Suppose f is monotonic and, for all p, f(p) € M. Then either
(i) for some ¢, (¢ A Con®(p)) ¥ f(p) or
(ii) for some 3 < o and @, [p A f(p)] = [ A Con®()] # [L].

Question: In case (ii), can we find a true ¢ such that
[ A f()] = [ A Con®(p)]?
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Recall:  is I-consistent if EA + ¢ is consistent with the true N9
theory of arithmetic.

1Con is a NJ analogue of consistency.
Recall: 1Con(T) is MY conservative over {Con*(T) : k < w}.
Such conservativity results are drastically violated in the limit.

If ¢ implies MY transfinite induction along «, then
(¢ A 1Con(p)) strictly implies (¢ A Con®(p)).

Is 1Con the weakest such function?
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Harrison Linear Order

The Harrison linear order H is a recursive linear order with no
hyperarithmetic descending sequences.

H=wK x (14 Q)
Thus, H provides a notation to each recursive ordinal.

Using Godel's fixed point lemma, we can iterate Con along H.
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Between Con and 1Con

We say that f majorizes g if there is a true ¢ such that whenever
Y then (1) strictly implies g(%).

Theorem (Montalban-W.)

For every non-standard oo € H and standard 8 € H,
(i) ¢ — (@ A Con®(y)) majorizes @ — (@ A Con®(p)) but
(ii) ¢ — (¢ A 1Con(yp) majorizes ¢ — (o A Con®(¢p)).
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From cofinal to in the limit

We would like to strengthen our positive results by changing
cofinally to in the limit.

Let f be recursive and monotonic. Suppose that for all
(i) ¢ A Con(y) implies f(¢) and
(i) f(p) implies .

Question: Must f be equivalent to the identity or to Con on a true
ideal?

Question: Is the relation of cofinal agreement on true sentences an
equivalence relation on recursive monotonic operators?
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