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Introduction 

Up to now, the subsystem of second order arithmetic with A 1-comprehension and 
Bar-induction is the strongest for which we have a computation of its proof- 
theoretic ordinal. This was done in [9] by Jfiger and Pohlers. The above mentioned 
system is neatly connected to an extension of Kripke-Platek set theory, called KPi. 
The standard model of KPi is the initial segment of the constructible hierarchy 
formed by the first recursively inaccessible ordinal. So a next step towards an 
ordinal analysis of the subsystem of second order arithmetic based on//~-compre- 
hension is offered by a set theory which axiomatizes essential features of L(#o), 
where #o denotes the first recursively Mahlo ordinal. Let us call such a theory 
KPM. Now, Po allows descriptions by concepts from higher recursion theory 
which do not prima facie rely on the realm of recursively large ordinals: #o is the 
first ordinal which is not recursive in the superjump (see [7]), and #o is the 
supremum of the closure ordinals of non monotonic//~ definitions of a 
special kind (see [13]). So it is much to be hoped for that a proof theory of KPM 
would be a starting point for a proof theory of the superjump as well as a proof 
theory of non monotonic inductive definitions. 

The purpose of this paper is to deliver a perspicuous ordinal notation system, 
which is sufficient for the proof-theoretic treatment of KPM. 

There is previous work, which is important for this paper: In [3], Buchholz 
invented his ~p-functions. The paper [-4] by Buchholz and Schiitte presents the 
definition of the functions ~p~ for ~c ranging over regular cardinals > co below Io, 
where I o denotes the first weakly inaccessible cardinal. In [8], J/iger extended this 
hierarchy to obtain collapsing functions ip~ for every ~c < A o. Here, A o stands for 
the first cardinal p which is a limit of 0-inaccessible cardinals for every 0 < # 
(see 1.1). The ~p-functions are closely related to the O-functions. Pohlers (see [11]) 
extended the O-hierarchy of functions by defining a doubly indexed hierarchy 
2~. O0el3, which is also based on 0-inaccessible cardinals. Eventually, Sch/itte (in 
[15]) extended J/iger's notation system. To get "names" for cardinals of a higher 
degree of inaccessibility, Schiitte goes back to an old concept of his, the 
Klammersymbole. 
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1. Basic Notions and the Functions I. 

We work in Zermelo-Fraenkel set theory with the axiom of choice and, in addition, 
assume the existence of a weakly Mahlo cardinal (see [10, p. 61]). Throughout,  let 
M denote the least weakly Mahlo cardinal. 

Conventions. Small greek letters range over ordinals. (e,/~), (e,/~], re,/~), [e,/3] 
denote intervals of ordinals in the usual sense. 

ON stands for the class of ordinals and CARD for the class of uncountable 
cardinals. LIM denotes the class of limit ordinals. 

The variables x, re, r, x', ~', ~' are reserved for regular uncountable cardi- 
nals < M .  If X is a set of ordinals, we write X < e  as an abbreviation 
for V ~ ( ~ X ~ < ~ ) .  XCY:.*~Vcc(~eX=~cc~Y). ~r ~< f l : ,~  
</~v~=/~. 

An ordinal ~ is an additive principal number if 0 < ~ and ~ + q < ~ for all 4, t /< ~. 
AP denotes the class of additive principal numbers. 

If X is a class of ordinals, there exists a unique increasing function F such that 
the domain of F, dora(F), is an ordinal ~ or ON and X = {F(~) : ~ c dom(F)}. F is 
called the enumeration function of X and we use Enum(X) to denote F. We say that 
a limit ordinal 2 is a limit point of X if 2 = sup(Xc~2). 

e l (X):= Xu{~:c( is limit point of X}. 

1.1. Definition. A cardinal ~ is o-inaccessible if it is regular and limit of 
a-inaccessible cardinals for all a < O- So the 0-inaccessible cardinals are exactly the 
regular cardinals, hence the 1-inaccessibles are weakly inaccessible cardinals. By 
induction on r we define 

I o : = Enum(cl {#: # > o) ̂  # is o-inaccessible}) 

and write Ioe in place of I0(e). 
x is weakly Mahlo iff x is a cardinal such that for every function f :  x--,K there 

exists a regular cardinal ~ < x such that Ve < n(f(e)< n). 
Every weakly Mahlo cardinal # is 0-inaccessible for all O < # (see [6, CH.4, 3.4]). 

But # is not the first cardinal v such that v is v-inaccessible. There are # cardinals v 
below # such that v is v-inaccessible. This is not the strongest statement one can 
prove in this connection. Indeed, Mahlo cardinals are larger than any cardinals 
which can be obtained by processes like these. 

The functions I,  are used in [-8] to develope a notation system which reflects 
some structural properties of the cardinal A o : = min {4 > 0: V6, r/< ~(I6q < 4)}. 

But Ao only shares a few properties with M, and likewise the corresponding 
notation system is not sufficient for the treatment of KPM. 

2. The Veblen Hierarchy and the Functions q~ 

The Veblen hierarchy is well known and studied in the literature. For  references on 
these functions we refer the reader to [12] and [-14, Sect. 13]. Especially [12] is 
recommended as a thorough and lucid introduction to this material. Therefore we 
just assemble basic properties of these functions. 
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2.1. Definition. By induction on a, we define 

~0~ := Enum({~ s AP: V~/< a(q~,(0 = 4)}) 

and write q~afl for ~0~(fl). 
So ~Oo is just the enumeration function of the additive principal numbers, thus 

~oOa = ~ .  
We also consider a cardinal valued analogue of the Veblen hierarchy: 

R~ :=  Enum({# ~ CARD: Vr/< a(R,(#) = #)}. 

By definition, we then have Ro(~)=N1 +r We write Raft for R~(fl). 
Properties of the function R stated in this paragraph without proof follow 

either immediately from the definition of R or may be proved like the 
corresponding properties of q~. 

2.2. Lemma. (i) tpafl~AP; Rafl~CARD. 
(ii) ~ < a =~ ~0r = q~afl A R~(Rafl) = Raft. 

(iii) fl < 7 =~ ~oafl < q~a7 A Raft < RaT. 
(iv) a < fl =~ ~0a0 < ~ofi0 ̂  Ra0 < Rfl0. 
(v) ct < q~a0; a < Ra0. 

(vi) /~ ~ CARD A a, fl < # =~ q~afl < #. 
(vii) I f  # is weakly inaccessible or a limit of  weakly inaccessibles, then 

Va < I~Vfl < I~(Rafl < I~). 

Proof of (vii). Let ~c be weakly inaccessible. Then Vfl < tc(R0fl= N1 +a < K) since 
b~, = x. Now assume 0 < a < x and Vr/< aVfl < x(Rt/fl < x). By the regularity of ~c, to 
show Vfl<x(Raf l<x)  it suffices to prove that X : = { f f < K : V f f < a ( R f f ( = 0 }  is 
unbounded in x. For  6 < x  we define: ~o=5, ( ,+ l=sup{Rt l ( , : t l<a} ,  

= sup {(,: n < 09}. Then Vt/< a(Rr/( = ~) and ~ =< ~. Moreover, r < x by regularity of 
~c and the assumption above, hence ( <  x, again by regularity of x. This establishes 
unboundedness of X. Finally, Va < xVfl < x(Rafl < x) follows by induction on a. 

If # is a limit of weakly inaccessibles and a, fl < bt, then there exists a weakly 
inaccessible x < ~ such that a, fl </~, so Raft < ~ < #. []  

2.3. Proposition. Let f be one of the functions q~ or R. Then fa i l  = f 7 6  iff we have 
one of the following cases: 

1. a < y  and fl = f T6, 
2. a = 7  and fl=6, 
3. 7 < a and fa i l  = 6. 

2.4. Proposition. Let f be one of the functions q~ or R. Then fa i l  < f76 iff we have 
one of the following cases: 

1. a < y  and fi< fTb, 
2. a = 7  and fl<6, 
3. 7 < a  and fa f l<6 .  

2.5. Proposition 
(i) For every 7 ~ AP, there exist unique a and fl < 7 such that 7 = ~pafi. 
(ii) For every # ~ CARD, there exist unique a and fl < # such that # = Raft. 
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2.6. Definition. An ordinal  ~ is said to be strongly critical if q~0 = ~. We  let SC 
denote  the class of  s t rongly critical ordinals.  

2.7. Lemma.  For every Y e A P \ S C ,  there exist unique ~, l~ < 7 such that 7 = q)~fl. 

2.8. Lemma.  For every ~ r  there exist unique ~t . . . .  , ~ , e A P  such that 
~=cr 1 + ... + ~ ,  and ~>cf l  > ... >~ , .  

2.9. Definit ion.  (i) 7 = NF(R~f l  :'r ~--" q ) ~ f l  A 0~, f l  < ~. 

(ii) # = N v ~ f l  : ' ~ #  = 4~afl ^ ~, fl < y. 
(iii) ~ = NF~I + . . .  + ~, :r = cq + . . .  + ~, ^ ~a, . . . ,  ~, e AP  ^ ~ >  ~ > . . .  > ~,. 

3. The  Funct ions  Z~ 

Henceforth we restrict ourselves to ordinals below M r :  = min{~ > M: ~ e SC}. In  
this pa ragraph ,  we define functions Z~ : M ~ M  for ~ < M r by transfinite recursion 
on ~. This hierarchy of functions enables us to define a "collapsing funct ion" 
D : M r - * M  via D(~): = Z~(0), which sends ordinals  ~ e [-M, M r) below M. The  need 
to use functions indexed by  ordinals  f rom above  M to reflect essential features of  a 
Mah lo  cardinal  cor responds  to the fact tha t  M is not  to be ob ta ined  by i terat ion 
combined  with d iagonal iza t ion  of inaccessibility f rom below. 

Fo r  X C M ,  we set ClM(X):= X w { 2 < M : 2  is a limit poin t  of  X}. 
By x, n, z, x', n', "c' we always denote  regular  uncountab le  cardinals  < M. 

3.1. Definition. Every  ~ <  M r has a unique expression by means  of s t rongly 
critical ordinals  < M, the cons tants  0, M and the functions + ,  ~p. We denote  this set 
of  s t rongly critical ordinals  < M by SCM(~ ). The  precise definition of SCM(~) is 
given by the following induct ion on c~. 

1. SCM(O ) : = SCM(M) = O. 
2. SCM(.) : = {~z} if ~ < M a n d .  e SC. 
3. SCM(00 : = SCM(~I ) t . . ) . . .  k..)SCM((Xn) if cr = NF(~I "~- . . .  -~-(Z n. 

4. S C M ( ~ ) : =  SCM(T)k_)SCM(6)  if 0r = NF~OT6. 
We set ~ * : =  sup(SCM(~)w{0}). 

3.2. Lemma.  ~* < M.  

Proof Obvious.  [ ]  

3.3. Inductive Definit ion of  B(~, fl) and  Z~ for fl < M and ~ < M r. 
(BI) flw{0, M} CB"(a, fl). 
(B2) 7=NV71 + . . . + 7 k ^  71 . . . . .  7keB"(u, f l ) ~ e B " + a ( a ,  fl). 
(B3) ~ = NF~P6U ^ 6, '1 e B"(~, fl) =~ ~ e B" + ~(~,/~). 
(B4) ~eB"(~,fl)A ~<~ ~ TeB"+l(a, fl). 
(B5) 5, q e B" (a, fl) A 5 < a A q e d o m  (Za) ~ Z~(t/) e B" + l(a, fl). 
(B6) B(u, fl) = ~ {B"(~, fl): n < ~o}. 
(B7) Z, = Enum(ClM({K: ~ r B(~, s:) A ~ e B(u, ~)})). 

Note that in the definition above (and always) ~ and ~ range over regular 
cardinals, which are uncountable and < M. 

We write Z~fl for  ;G(fl) and  set IN(a) :  = {~r tcr B(~r to)A U e B(~, ~)}. 
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3.4. Remark. The definition of the functions Z~ resembles that of the Feferman- 
Aczel functions O, (see [1] and 1-14]). The main difference is that for e > 0  every 
element of IN(a) must be a weakly inaccessible cardinal. Hence, ZI(0), already, is a 
cardinal which can't be proved to exist in ZFC. The first conjunct in the definition 
of IN(a) is the essential part, the second requirement in the definition of IN(a), that 
e ~ B(e, x), is raised for technical reasons. Such a "normality" condition has already 
been used by Buchholz (see [2]) to recursively define the functions O~. If Z'~ denotes 
the function which is defined without the constraint e e B(e, x), then the hierarchy 
(Z'~),<Mr grows more slowly than the z,-hierarchy, but it eventually gets the same 
job done. Mainly, the condition ct e B(e, x) is raised for bypassing lots of difficulties, 
and thus accounts for the tractible nature of the Z,. 

3.5. Lemma. (i) e__< 7/x/~ < 6 < M ~ B(e, ]~) C B(~, 6). 
(ii) 2 ~ LIMA 2 < M =~ B(e, 2) = U {B(e, ~): 4 < 2}. 

(iii) Z 0 e = N x + , = ~ 0 e  for e < M .  
(iv) /~ r CARD A/~ < M ^/~ r B(e, #) =~ B(e, # ) n M =  #. 

Proof (i): By induction on n, one easily sees that B"(e,/~)C B(7, 6). 
(ii): By (i) U{B(e, 4): ~ < 2} C B(e, 2). B"(e, 2) C U{B(e, 4): ~ < 2} follows by in- 

duction on n. 
(iii): In the inductive definition of B(0, x), the clause (B5) does not apply. Since 

6, q < x implies ~ogr/< K by 2.2 (vi), we have tr162 B(0,1<) for every regular uncountable 
cardinal x < M. This proves (iii). 

(iv): Suppose ?sB"(e ,#)nM.  We prove by induction on n that 7<#.  If 
7 ~ B"(e, #)riM holds by (B1)-(B4), then 7 </ t  follows either trivially or by induction 
hypothesis using 2.2 (vi) in the case 7 = NVq~frl. Now suppose 7 ~ B"(e, #) holds by 
(B5). Then 7 = Z6q where 6 < e. This implies Z0(~ + 1)= N~ + 1 ~ B(e, #) by (B5) and 
(iii). Application of (B4) yields ~r + 1 C B(e, #), hence 7 < # since/~ r B(e, #). [] 

3.6. Lemma. For every e < M r, Z, : M ~ M  is a normal function with dom(z,) = M. 

Proof It suffices to show that IN(~) is unbounded in M, i.e. V 7 < M36 t iN(e)  
(7 < 6). Moreover, thanks to the demand that M be a weakly Mahlo cardinal, we 
only have to show that 

Z~:= {v<M:v~CARD A vCB(e,v) Ae~B(e,v)} 

is closed and unbounded in M because this implies that Z ,  contains M regular 
cardinals. Suppose <v,:q < 2> is an increasing sequence of elements of Z,, where 
2 < M is a limit. Let v = sup {v, : r/< 2}. By 3.5 (ii), v ~ B(e, v) would imply v ~ B(e, v,) 
for some q < 2 thus the contradiction v, ~ B(e, v,) by 3.5 (iv). This establishes v ~ Z~, 
hence closure of Z,. 

Now assume ~* </~ < M. This implies SCM(~) C B(e,/~). Consequently, e ~ B(c~,/~) 
by (B2), (B3). By induction on n, we show that IB"(e,/~)1 < M, where IBn(e,//)1 denotes 
the cardinality of B"(e,/~). This is clearly true for n = 0. In case n = m + 1, by 
induction hypothesis and the regularity of M, there exists a v < M such that 
Bm(e,/~)nMcv. Therefore, B"(e,/~) is contained in the closure of the set 
X : =  Bin(e,//)uv with respect to the mappings +,q~, and Z~ for 4,q~X and 4<e .  
Since IXI<M, we obtain IB"(e,/~)I<M. This completes the induction. As a 
consequence, we get IB(e,/~)1 < M and for ~ : = rain {r/: q r B(e,/~)} that ff < M. By the 
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definition of ~ and B(a, 0, we obtain B(a, fl)= B(a, 0, hence (~  B(a, 0, thus ~ �9 Z~. 
Therefore, since we started with an arbitrary f l < M  such that a*<f l  and 
established the existence of a ( e Z~ such that fl < ~, Z~ must be unbounded in M. 

Since Z~ is closed and unbounded in M, we obtain that IN(a) is unbounded in 
M, hence, by definition, X~ : M ~ M  is a normal function. []  

3.7. Lemma. (i) a e B(a, Zafl). 
(ii) X~0, Za(~/+ 1) e IN(a). 

(iii) Zafl q~ a(a, Zafl). 
(iv) B(a, Xgfl)nM = Xafl. 
(v) f l<~ < M  =:- zaf l<xa& 

Proof (i), (ii), and (v) are obvious by the definition of Zafl. 
(iii): This is immediate iffl is a successor or fl = 0. Now suppose that fl is a limit. 

gaff e B(a, zafl) implies the existence of a ~/< fl such that gaff ~ B(a, ga(q + 1)), and 
thus ga(r/+ 1) ~ B(a, ga(q + 1)) by 3.5 (iv) since ga(~/+ 1) < gaff and ~(a(~/+ 1) e IN(a). 
Contradiction. 

(iv) holds by (iii) and 3.5 (iv). []  

3.8. Lemma. (i) 7 = NF71 + . . .  + 7, e B(a, fl) =:- y 1 .....  7, e B(a, fl). 
(ii) Y = NF~06~/e B(a, fl) =~ 5, ~/e B(a, fl). 

(iii) Y e B(a, fl)c:~Y* e B(a, fl). 
(iv) a* < zafl. 
(v) Zy6 e B(a, zafl) ~ 7, 5 �9 B(a, zafl) A Xy5 < zafl. 

Proof (i): It is easily seen, by induction on m, that yeB'~(a, fl) implies 
71,--., 7, e Bin( a, fl)- The proof of (ii) proceeds by the same induction. 

(iii) is an immediate consequence of (i) and (ii) if one inducts on 7. 
(iv): It follows from (iii) and 3.7(i) that a* e B(a, gaff). Hence a* < Xafl by 3.2 and 

3.7(iv). 
(v): Suppose X76eB(a,~afl), then g76<xafl by 3.7(iv). Since V*,6<~76, 

another application of 3.7(iv) yields 7", 5 ~ B(a, Xafl), so 7 e B(a, Xafl) according to 
(iii). []  

Using 3.7(iv) and 3.8(iii), we obtain 

3.9. Lemma. 7 e B(a, Xafl)r < xafl. 

3.10. Definition. # = NVZafl :'r = za f l  A fl < #. 

3.11. Lemma. zafl = X76 A fl, 5 < Zafl ~ a = Y A fl = 5. 

Proof By 3.8(iv), Zafl = Z76 implies 7" < Xafl, thus 7 e B(a, Xafl). Suppose 7 < a. Then 
Z76 �9 B(a, Xafl) follows from 7, 5 �9 B(a, Xafl) by (B5). But this contradicts 
ZaflCB(a, Xafl). By symmetry, we also exclude ct<7, so a =  7. Since X~ is an 
increasing function, this proves the assertion. []  

3.12. Lemma. 7 < a A 7 e B(a, Xafl) A 5 < Xafl ~ Z76 < Xafl. 

Proof From the hypothesis we obtain XT~B(a,  Zafl), thus X75<Xafl by 
3.7(iv). []  
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3.13. Lemma.  Assume # = Z ~ f l  and v=NvX76. Then # < v  holds i f f  one of the 
following cases holds: 

1. c~<7, f l<v  and ~ B ( 7 ,  v), 
2. ~=7 and fl<7, 
3. 7<~  and (#<-<_6 vyCB(~,#) ) .  

Proof  If  ~ < 7, then # < v ,~f l  < v ^ ~ ~ B(7, v) holds by 3.8(v) and  3.12. In  case ~ = 7, 
we have # < v r  because X, is an increasing function. N o w  suppose  7<cr 
F r o m  #__< 6 v y 6 B(~, #) we obta in  # < v, this is because 6 < v and  7 e B(7, v) C B(~, v). 
Since 6 < # ^ 7 ~ B(~, #) implies v E B(cr #) and  moreove r  v < #, we also have 
# < v ~ # =< 6 v 7 r B(~, #) in this case. This  proves  our  assertion. [ ]  

F r o m  3.9 and  3.13, we obta in  the following charac ter iza t ion  of # < v: 

3.14. Corollary.  Assume # = Z~fl and v = NFZ7& Then # < v i f f  we have one of  the 
following cases: 

1. ~<7, f l<v  and ~ * < v ,  
2. ~=7 and fl<7, 
3. 7<~  and ( # < 6 v # < 7 " ) .  

3.15. Lemma.  Let # = N F # ~ f l < M ,  0 < ~  and let v=r~FZy3. Then we have: 
(i) #+v .  

(ii) # < v r 1 6 2  ^ # < 6 )  v ( 0 < y  ^ ~ , f l<v) .  

Proof  If  0 < 7, then v is weakly  inaccessible or  a limit of  weakly  inaccessibles, thus 
(i) and  (ii) follow f rom 2.2(vii). If  7 = 0, then v = ~06, so (i) and  (ii) hold  by 2.3 and  
2.4. [ ]  

4. Relations between I.  and X. 

In  this pa rag raph ,  we show tha t  the functions I ,  and  Z, for c~ < A o coincide on M, 
where A o denotes  the least ordinal  ( >  0 such tha t  V6, r /<  ~(I6r/< O- 

4.1. Lemma.  By recursion on n, we define 6 o = 0 and 6, + 1 = X6, O. We set 2 = sup 6,. 
. "< OJ 

(i) 6, < z M 0  ^ 6, < 6, + 1. 
(ii) u < 2(~ E B(~, 0)). 

(iii) V~ < 2Vfl < M[I~f l  = X~fl]- 
(iv) A o = sup {6,: n < o9}. 

Proof  (i): This  is easily verified by induct ion on n using 3.13. 
(ii): Suppose  ct<2. Then  there exists n such tha t  a < 6 , .  Hence  we have  

e B(6,+ 1, 0) since 6, C B(6, + 1, 0). Let  ~/be min ima l  with the p rope r ty  ct e B(r/, 0). 
The  above  discussion shows r /<  2. I f  ~/= 0, then ~ e B(~, 0) holds. In  case 0 < r/, we 
have  q = 7 + 1 for some 7, so ct r B(7 , 0) and ~ e B(7 + 1,0). If  7 r B(7, 0), then one sees 
easily by induct ion on n that  B"(y + 1, 0) C B(7, 0), which leads to the cont radic t ion  
B ( 7 + l , 0 ) = B ( 7 , 0 ) .  Hence  Y~B(y,0). I f  7 = 0 ,  then 7 < ~ .  I f  0 < y ,  then 
X0(7 + 1) C B(% 0), thus 7 < �9 since ~ r B(7, 0). This  verifies 7 + 1 < ~. Hence,  f rom 

~ B(y + 1, 0), we obta in  a ~ B(~, 0). 
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To  show (iii), we proceed by induct ion on a < 2. One has Z0fl = I0fl. This is 
because x r B(0, ~c) for every regular x < M. Now  suppose that  the assertion is true 
for ~ < a. If tc is a-inaccessible, then V~ < a\/ t /< tc(IO/= XO/< x), hence x r B(a, x). 
According to 3.5(iv), f rom ~c r B(a, x), we get Z~t/< ~ if ~ < a, ~ ~ B(a, ~) and q < x. By 
(ii), we have ~ ~ B(a, x) for every ~ < a, thus ~'~ < a r t / <  ~(Z~t/= I~t /< x), which 
proves a-inaccessibility of x. So we have established that  IN(a) = {to < M: co < x ^ 
is a-inaccessible}, which becomes Vfl < M (Karl = Iafl). The  proof  is complete.  

(iv): If 4, q < 2, then there exists n such that  ~, q < 6,, so I O / =  Z~q < ~, + ~ by (iii) 
and 3.13, hence A o < 2 .  N o w  let us show that  6 ,<A o. The  case n = 0  is trivial. If 
n = m +  1, then 6,. < A o by induction hypothesis,  so 6, = I6,.0 < A o  by (iii) and the 
definition of Ao. Hence 2 < A  o, and we are done. [ ]  

4.2. Corollary. (i) A o < zM0.  
(ii) W < AoV/~ < M(Ia/~ = Za/~). 

5. The Functions ~p~ 

In this paragraph  we define ordinal  functions ~v~ : M r ~  ~ for all regular cardinals 
of the shape Za/L ~p~ "collapses" elements of M r below ~:. The invention of  these 
functions is due to Buchholz.  The  article [5] presents the definition of  the functions 
tG for x ranging over regular cardinals > ~ below the first weakly inaccessible 
(hence for successor cardinals). In [8], J/iger extended the hierarchy to obtain 
collapsing functions ~p~ for every x < A o. Our  exposi t ion here is inspired by [8]. 

5.1. Definition. (i) R : =  {Za0: a < M r} ~ {Za(/~ + 1):a < M r ^ ]~ < M}. 
(ii) For  x ~ R we set 

x - =  f~afl if x = X a ( f l + l )  
(a*  if ~c=xa0 

Convention: In this and the following paragraphs,  to, n, z, K', ~', z' are supposed to 
range over elements of  R. 

5.2. Lemma. ( i ) t o - < ~ .  
(ii) I f  x = NF~(a]~, then a* < ~c-. 

Proof. Immedia te  f rom 3.8(iv). [ ]  

5.3. Inductive Definition of Cda)  and ~p~(a) for a < M r by recursion on a. 
( e l )  g - u { g - ,  M} cC~(a). 
(C2) y = NFV 1 + . . .  + Vk ̂  7 i, ---, 7k ~ C~(~) => 7 ~ C~ + 1(~), 

n:::~ n+ l  (C3) 7 = NFq)6q A (~, q ~: Cx y ~: Ctr (~). 
(C4) ~ ~ C~(a)c~ ^ ~, < ~ ^ ~ e R ~ y ~ C~ + l(a). 
(C5) 7 = NrZ&t ^ '~, ~/~ C"da) ~ y E C"~ + ~(a). 
(C6) y = NFO&/A 6, r/~ C~(a) ^ 0 < 6 ^ ~, r /< M ~  y ~ C~ + 1(~). 
(C7)/~ < a ^ ~,/~ ~ C"~(a) ̂ /~ e C,(D ~ ~,(~) e CU '(a). 
(c8) G ( a ) =  U{G(a): n~co}. 
(C9) ,p~(a) = min { 4: ~ ~ Cd~)}. 
We write ~pxa for ~pda). 
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5.4. Lemma. (i) IG(~)l < ~ (IG(~)l : -  cardinality of C~(~)). 
(ii) Vx~  e ( x - ,  ~:). 

Proof. (i): It is enough to show that [C~(~)[ < x. This is easily accomplished by an 
induction on n using the regularity of ~:. 

(ii) follows from (i). []  

5.5. Lemma.  (i) ~ < fl => Cd~)  c C~(fl) ^ ~w:~__< ~vxfl. 
(ii) = </~ A = �9 C~(=) => ~vx= < Vx/~. 

(iii) x �9 C~(=). 
(iv) ~px~ �9 SC. 

(vi) /~ = NFr # 4: ~pX~. 

Proof (i) is obvious if one passes through the inductive definitions of the sets. 
(ii): By (i), from ~</~ and c~�9 we obtain ~�9 thus ~px~�9 

holds by (ii) and (C7), so ~vx~ < lpx/~ since ~px/3 ~ Cd/~ ) and ~pxc~ < q~x/~. 
(iii): Suppose X=NF)~&/- If ~=0,  then 6 * = x - ,  hence SCM(6)cCdg), which 

implies 6 �9 C~(c~) by (C1)-(C3), thus x �9 C~(g) by (C5). If r/= ~ + 1, the discussion 
above shows that 6 �9  as well. This is because 6 " <  x -  holds by 5.2(ii). 
Moreover, we have ~ < x -  + 1 C C~(c~) in this case, so x =)~6(~ + 1)�9 CK(~) thanks to 
(C1)-(C3) and (C5). 

(iv) follows from closure of C~(~) under + and q~. 
(v): Suppose #=NF)~O/-Then ~*, ~<# .  So, if/~= ~vxc~, then ~*, r/ �9 Cdg), thus 

# �9 C~(c0, which contradicts ~px~ ~ C~(c0. 
(vi): Suppose, for a contradiction, #=NFOO/=~pX~. Then ~,r/<~px~, so 

4, t / �9  Cd~), which yields toga =/z �9 Cd~). Contradiction. []  

5.6. Lemma. (i) ~wr 7 < x < z ==> ~wr 7 < x - .  
(ii) ~: < n :* ~prc 7 ~ (~:-, x). 

Proof (i): Suppose x = NF)~]~r Then we have/~*, r __< x - .  This shows that x -  < ~pr~7 
implies fl*, ~ �9 C~(7), whence x �9 C~(7). So if ~:- < ~vTr 7 and ~c < r~ hold, then x C C~(7) 
by (C4), which ensures that x < ~pr~7. This proves our claim. 

(ii) follows immediately from (i). []  

5.7. Proposition. C~(e)c~x =~pxe. 

Proof Let x = )~flr If fl > 0 and ~ �9 Cde)~x ,  then we get q < Z0(~/+ 1) C Cde)c~x by 
(C5) and (C4), and thus the assertion. So we only need to consider the case fl = 0. 
We induct on n to prove C~(e)c~xC~pxe. 

If 6 �9 C~(e)c~ x holds by (C 1)-(C4), then 6 < ~pxe follows either trivially or by I.H. 
(=  induction hypothesis) using 5.5(iv) in the case of (C3). 

Assume that 6 �9 C"de)~x holds by (C5). Then 6 = NF)~?:( for some 7, ( � 9  C~- l(e). 
By I.H., we know that ( <  ~pxe. Since 6 < x = Z0~, either 7 = 0 A ( < ~ or 0 < 7 A 6 < 
holds by 3.13. In the first case, we get 6 < x - ,  hence 6 < ~pxe. ~ < tc - implies 6 < ~pxe 
in the second case. 

If 6 = NFOT(�9 C~(e)nx holds by (C6), then 0<7.  Therefore, we obtain Z06 = 6 
< Z0~ = r,  hence 6 < ~ < x -  < ~px~. 

Finally, let us assume that 6=~pzTeC~(e)~x, where 7�9 7 < e  and 
r~, 7 e C~- ~(~). If rc < x, then we have 7t < ~vxc~ by I.H., whence 6 < ~pxc~. If rc = x, then 
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6<hox~ follows f rom 5.5(ii). N o w  suppose x < n .  By 5.6(ii), since ~pny<x, this 
enforces ~pny < x - ,  thus 6 < lpxa. [ ]  

5.8. Lemma. Let  n < x. 

(ii) v;~a < z ~ ~pxct < ~onfl. 
(iii) ~prca ~ ~pzfl. 

Proof. (i) holds since ~pnfl < n. 
(ii): Suppose lpxct <n .  Then  ~pxa< n -  holds by 5.6(i), hence ~pKa <~pr~fl. 

(iii) is a consequence of (i) and (ii). [ ]  

5.9. Corollary. ~p~ct = ~pnfl A a ~ C~(a) ^ fl e C~(fl) ~ x = 7r ̂  a = ft. 

Proof. 5.8(iii) and 5.5(ii). [ ]  

5.10. Proposition. Let  a �9 C~(a) and fl �9 C~(fl). Then lp~zfl < ~pxa if f  we have one of  
the following cases: 

(1) z~ < g A rc<~pg~, 
(2) ~=x^/~<~,  
(3) x < n ^  ~pnfl<x. 

Proof. Suppose z < x. Then  clearly (1) =*- ~pnfl < ~pxa. Iflpnfl < ~pxa, then n < ~pxa by 
5.6(ii), so n < ~pxa holds by 5.5(v). This establishes ~pnfl < ~pxa =~ (1). In case n = x, 
the assertion follows from 5.5(ii). 

N o w  suppose x < z. In this case, we have ~pnfl q~ (to-, x) by 5.6(ii), hence (3) holds 
iff ~pnfl < vgxa. [] 

5.11. Definition. y = NFlPKa :<::)'7 = lpKa  A 0~ �9 CK(a ). 

5 . 1 2 .  L e m m a .  (i) ~, = svYl + . . .  + Yn �9 c m ( a )  ~ Yl . . . . .  Y. �9 c m ( a )  �9 

(ii) y = SEXpOt/�9 C~(a) v y = SFr149 cm(a) = ~, t / �9  C~(a). 
(iii) y = SFZ~t/�9 C~(a) = ~, t / �9  C~(a). 
(iv) ~, = z~n  e c J ~ ) c ~  = ~,,7 �9 CJ~) .  
(v) ~ < ~: ̂  ~ = w~/~ �9 c~(~)  = ~ s C~(~). 

(vi) x < n ^ ~ -  < ~pn/? ̂  7 = Nr~Prq ? e C~(a) => fl < ~ ^ re,/?�9 C~(~). 
(vii) zc �9 C~(~) =~ re- �9 C~(~). 

Proof. One easily proves (i) and (ii) by induct ion on m. 
(iii): Suppose y=NrZ~r/eC~(a).  We proceed by induct ion on m to show 

~, ~/e C~(a). According to 3.150) and 5.5(v), 7 �9 C~(a) must  ho ld  by (C1), (C4) or  (C5). 
If this is the case via (C1) or (C4), then ~*,r/eC~(a), thus r149 In the 
remaining case, the assertion follows from 3.11. 

(iv): By 5.7, the hypothesis  yields ~*,r/=<y<~pxa, so ~*,~�9 thus 
~, ,7 �9 CJ~) .  

(v): By 5.6(ii), r~ < x =~ ~pxa r (re-, n). Hence our  hypothesis  implies rc =< ~ox~, so 
< ~pxa by 5.5(v), and we are done. 

(vi): If x<r~ and x -  <~pnfl, then x<~pnfl holds by 5.6(ii), hence ~pnfl�9 
must  hold by (C7), thus r~, fl �9 C~(~) and fl < a. If x = n, then fl < a and, since 
fleC~(fl), we also have fleCk(a). Moreover ,  xeC~(a)  by 5.5(iii). This proves the 
claim. 

(vii) follows from (i)--(iii). [ ]  
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5.13. Lemma.  I f  fl<Kafl, then: 
(i) Z~fl < ~ ~ X~fl < ~ ^ Z~fl ~ c~(r 

I f  7=Nv~afl, then: 
(ii) 7 < Wc~<:~ ~, fl < ~p~:~ ̂  7 < ~c. 

Proof (i) and  (ii) follow f rom 5.7. [ ]  

The  next l e m m a  provides  a charac ter iza t ion  of the relat ion fl < Karl by  means  of  
sub te rms  of a and fl, solely. 

5.14. Lemma.  Let f l < M .  
(i) f l r  =~fl<Kafl .  

(ii) I f  fl~---NFKT(~, then: fl < Kafl <:~ y < a v fl < a*. 
(iii) I f  fl = NFWC~ and tc = NFK76, then: fl < Kafl~:~7 < a v ~c < a* v a r C~(~). 
(iv) I f  fl=NF4~76 and 0 < 7 ,  then: fl<Kafl<:~O<a. 

Proof (i) is obvious  by 2.2(vi). 
(ii): "=~": a < 7 ^ a* < fl yields tha t  a e B(7, fl), and,  moreover ,  V~ < fl(Za~ < fl) by 

(B5) and 3.7(iv), which becomes Karl=ft. 
"<= ' :  Since a*<Kafl, we clearly have f l<a*=~fl<Zafl.  If 7 = a ,  then 

fl = Ka6 < Karl since 6 < ft. N o w  suppose  tha t  7 < a. No te  that  7", 6 < ft. Hence  
7, ~ e B(a, Karl). This implies fl = KT6 < Karl by (B5) and  3.7(iv). 

(iii): "=~": F r o m  a < 7 A a* < ~ A a e C,(~), it follows tha t  Vt/< fl(Zat/e C~(~)c~ ~c), 
hence Karl = ft. " ~ " :  No te  that  a r C~(~) implies a* r C~(~). So, since a* < Karl, we get 
lc < ~* var  =~ fl < Karl. We k n o w  tha t  6 < K- < Wc~, hence ~ = K75 < ZYfl. This 
verifies fl < Karl in case tha t  a = 7. Finally,  suppose  tha t  7 < a. If  Karl < ~, then we get 
Karl<7* by 3.14, since 6<fl<Kafl.  But this is impossible  because 7"=<Ir - <ft .  
Hence  we have tc =< Karl, which implies fl < Karl. 

(iv) is a consequence of 2.2(ii) and  2.2(vii). [ ]  

6. The Notation System T(M) 

We isolate a countable  set of  ordinals,  T(M), such tha t  each element  of  T(M) can be 
denoted  uniquely using only the symbols  0, M, + ,  ~o, X, ~, ~P- 

6.1. Inductive Definition of T(M) and G7 < co for 7 ~ T(M). 
(T1) 0, M e T ( M )  and G 0 = G M = 0 .  
(T2) 7 = NFTX + . . .  + 7, ^ 71 . . . . .  7, e T(M) 

Y ~ T(M) ^ G7 = m a x  {G7 ~ . . . . .  Gy,} + 1. 

(T3) 7 = NFcP6tl < M ^ 6, q e T(M) =~ 7 e T(M) ^ G 7 = m a x  {G6, Gq} + 1. 
(T4) 7 = NF~p0q ̂  M < q ^ q ~ T(M) =~ 7 ~ T(M) ^ G7 = (Gq) + 1. 
(T5) 7 = NFZfq ^ 6, q e T (M) =~ 7 e T(M) ^ G7 = m a x  {G6, Gq} + 1. 
(T6) 7 = NF~fq < M ^ 0 < 6 ^ 6, q e T ( M )  =~ Y e T(M) ^ G7 = m a x  {G6, Gq} + 1. 
(T7) 7 = YFV2 K~ ^ X, a e T (M) ^ a < M =~ 7 e T(M) ^ G7 = m a x  {Gx, Ga} + 1. 

6.2. Remark. I t  follows f rom 2.2(vi), 2.5, 2.8, 3.11, 3.15, 5.5(iv), (v), (vi), and  5.9 tha t  
every ordinal  7 e T(M) is an e lement  of  T(M) due to exactly one of the rules 
(T1)-(T7) and  tha t  its degree G7 <co is uniquely determined.  
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6.3. Theorem. T (M)nM = Czoo0PS0)n~vS0, where ~ : = Z/~M+ 10 and 
eM+ 1 :=  q~l(M + 1). 

Proof. We set X : =  Czoo(tpH0)ntpS0 and T : =  T(M)nM.  Note that T(M)C eM + 1" 
" ( " :  By induction on GT, we show that 7 e T ~ 7 e XnCz(0). If 7 = NFZ6~ E T, 

then SCM(g)u {t/} C T, so SCM(6)w {r/} C XnCs(0) by I.H. Since 6 < eM+ 1, We obtain 
Z6t/e Cs(0)nZ, thus ~@ < lp~0 holds by 5.7, hence 7 ~ XnC~(0). If ? = NF~P xa e T, 
then ~, a e T ,  so x, a e XnCz(0 ) by I.H. This implies ? e XnCz(0 ). The remaining 
cases are easily verified. 

"D": Let X" : = C~oo0p~0)n~v~0. We prove X n C T by induction on n. Note that 
(C4) does not apply since there is no u satisfying u < Z00. Suppose ? = NF~PXa e X". 
Then x, a e C~ool0P~0) and a < ~p~0. ~ < s: would imply S ~ C~(a)n~c, and thus lead 
to the contradiction ~ < ~px~. Hence we have ~ < ~p~0 by 5.10. Therefore, by I.H., 
we obtain x, a e T, hence ? e T. Next suppose 7 = NF)~6r/�9 Then SCM(6)w {~/} C X ' - 1  
hence SCM(6)W {r/} C T by I.H., which implies ? ~ T. Similarly, one proves the other 
cases. []  

6.4. Lemma. Let ~, fl be elements of T(M), and let 7 , 6 , ~ e T ( M ) n M .  Then: 
(i) a + fl, ~o ~ e T(M). 

(ii) q~?6, g~7, ~76 e T(M). 
(iii) a* e T(M) ^ Ga* < Ga. 
(iv) x -  ~ T(M) ^ Gtc- < Gx. 

Proof Obvious. []  

6.5. Lemma. Ao=~p(zM0)0. 

Proof 6, e CxMO(0 ) is easily shown by induction on n. Now 6, < zM0. Therefore, we 
get the inequality " < "  by 4.1(iv) and 5.7. To prove " > " ,  it suffices to show 
Cxio(0)n)~M0 C A o. To this end, we induct on n. Note that the clause (C7) does not 
apply. Now suppose 7 e C~MO(0)n)~M0. If this is the case by (C1)-(C4) or (C6), then 
the assertion follows immediately by I.H. If 7=NV)~0~fl, then a, f l<zM0,  thus 
a, f l<A o holds by I.H. This implies e, f l<5 ,  for some n<o),  hence 7<5 ,+  1 <A o. 
The same argument yields ? < A  o in case that 7=NVq~efl with 0<~.  []  

7. A Primitive Reeursive Notation System 

We assume that ( . . .  > is a primitive recursive coding function on finite sequences of 
natural numbers. The function V:T(M)->N is given by the following recursion 
with respect to G~: 

v ( ~ )  = 

(0,0> if ~ = 0  

<1,0> if a = M  

<2, V(cQ) . . . .  ,V(C~n) } if ~ = N F a l + . . . + a ,  

(3, V(fl), V(7)} if ~ = NFq~fl7 

(4, V(fl), V(y)> if ~ = NFZfl7 

(5, V(fl), V(V)> if (~ = NF~fl~ and 

(6, V(~), V(fl)> if a = NFI])/~ fl 

o<t~ 
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Let 3; C N be the image of V. The mapping V induces a wellordering <~ on 3; via 
V(fl)<~V(7):c*-fl<y. The rest of the paper is devoted to proving that 3; is a 
primitive recursive set of natural numbers and that <~ allows a primitive recursive 
definition. Indeed, this task can be executed by simply exhibiting such primitive 
recursive definitions of 3; and <~, which on its part is independent of the existence 
of weakly Mahlo cardinals. Thus, only the wellfoundedness of <~ relies on a large 
cardinal hypothesis. But it is also possible to rid of this assumption as will be 
shown in a forthcoming paper. Indeed, it is possible to develop the notation system 
on the basis of recursively large ordinals by replacing each occurrence of a cardinal 
notion by its "recursive analogue". But then proofs will become more difficult since 
the proofs of 3.6 and 5.4(ii) are based on "cardinality" considerations which will no 
longer be available, then. So our assumption that there exists a Mahlo cardinal 
turns out to be an exaggeration, but it helps simplifying proofs. 

Now, in the previous paragraphs, we have already done a lot of work to deliver 
recursive characterizations of equality and inequality between ordinals. The main 
obstacle which prevents us from converting those results into a recursive definition 
of<~ anb 3; is that they comprise conditions like y e Cd4). This problem gives rise 
to the following definition. 

7.1. Inductive Definition of the coefficient sets K~7 for 7 e T(M). 
(HI) K ~ 0 = K ~ M = 0 .  
(H2) K~y=K~ylw. . .uK~7,  if Y=NFYl + "'" +Y," 
(H3) K ~ y = K ~ 6 u K d / i f  7=NFtP&/ or y =Nl~)~&/ or 7=NF~&/. 
(H4) If ~=NF1P~f,  then 

/ ~ 
K~y= K~rc, 

{f}wK~rcwK~f, 

if V < x -  

if x -  <yArc<rc .  

if x -<V^x<rc  

7.2. Lemma. Let yeT(M).  Then: yeC~(4)ce'K~7<~. 

Proof by induction on Gy. We set C := C~(4), Ky" = K~7. 
1. If y is not of the shape ~prcf, then the assertion follows from the I.H. using 

5.12(i), (ii), (iii). 
2. Suppose 7 = NvlPrC/3. 
2.1. y < X - .  Then ~ e C  and K y = 0 < 4 .  
2.2. ~:- < y Arc < x. From 7 e C we get rc e C by 5.12(v), thus Ky = Kyz < 4 by I.H. 

If Ky < 4, then rce C by I.H., so rc < ~px4, which implies y e C. 
2.3. x -  < y ^ x < re. Suppose y e C. By 5.12(vi), we then have re, f e C and f < 4. 

So the I.H. yields KrcwKf < 4, hence Ky < 4. Vice versa, if Ky < 4, then fl < 4 and, 
by I.H., ~, fle C, thus y e C by (C7). 

We now turn to a definition which will allow us to decide for c~, fie T(M) 
whether a,/6 < q~afl or a, f < ~efl. 

7.3. Inductive Definition of e(y) for y e T(M). 
1. e(y) = 0 if y ~ AP. 
2. e(y) = e if y = NF~00~f. 
3. e(y)=y otherwise. 
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7.4. Inductive Definition of E(?) for 7 ~T(M)c~M. 
1. E(~) = 0 if ~ ~ SC or ? = NF~0]~ or ~ = N F l P ( ~ 0 0 ~ ) ] ~ ,  where ~ < Z0~. 
2. E(7) = ~ if ~ = N ~ / ~  and 0 < ~. 
3. E (~)=?  otherwise. 

7.5. Lemma.  Let  ct, i~ be elements of  T(M). Let 8, r /~T(M)c~M and 0 < b .  Then: 
(i) a, fl < qgaflc~,e(fl) < ct ̂  [0 < f l v  e(a) < ct v a = 0]. 

(ii) 8, t /<  q~Sr/~e-E(t/) < 8 ^ [0 < t / v  E(8) < 8]. 

Proof. The p r o o f  consists of  a s t ra ight forward  but  c u m b e r s o m e  distinction by 
cases using var ious  results f rom earlier paragraphs .  But  this checking is best  done  
on scratch paper .  [ ]  

Now,  thanks  to 7.2, it is fairly clear by  2.2(vi), 2.4, 3.14, 5.5(v), (vi), 5.10, 5.13 
(for <) ,  and  5.14, 7.5 (for = NF) how to give a s imul taneous  induct ive definition of 
the set T(M) and the relat ions < and = NV on T(M), which can be conver ted  into a 
s imul taneous  primit ive recursive definition of ~ and  -~.  We omi t  the details, since 
this would a m o u n t  to a mere  repeti t ion of  the content  of  the above  men t ioned  
results. 

7.6. Remark. Let (~(~) denote  the set defined in the same way  as C~(~) except for 
the omiss ion of  clause (C6) (closure under  ~). Let  ~3x~ : = min  {4 : ~ ~ ~(~)} .  Then  it 
can be shown tha t  v3(Z10)0 = ~10, ~etxl o ) + 1 = Zetxlo)+ 10 and ~(Zctfl)O = ~p(zafl)0 for 
1 < a and Zafl ~ R. So we could as well have chosen to define our  no ta t ion  system on 
the basis of  the function ~ wi thout  requir ing closure under  ~. The  main  reason  
why we have  included the funct ion ~ in the bui ld-up of T(M) is our  desire to 
express the proof- theore t ic  ordinals  of  several subsystems of  KPi  by means  of  
ordinals  of  T(M). By using ~,  those nota t ions  become  m o r e  t ransparent .  
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