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Introduction

Up to now, the subsystem of second order arithmetic with A3-comprehension and
Bar-induction is the strongest for which we have a computation of its proof-
theoretic ordinal. This was done in [9] by Jager and Pohlers. The above mentioned
system is neatly connected to an extension of Kripke-Platek set theory, called KPi.
The standard model of KPi is the initial segment of the constructible hierarchy
formed by the first recursively inaccessible ordinal. So a next step towards an
ordinal analysis of the subsystem of second order arithmetic based on IT}-compre-
hension is offered by a set theory which axiomatizes essential features of L(u,),
where p, denotes the first recursively Mahlo ordinal. Let us call such a theory
KPM. Now, u, allows descriptions by concepts from higher recursion theory
which do not prima facie rely on the realm of recursively large ordinals: y, is the
first ordinal which is not recursive in the superjump (see [7]), and y, is the
supremum of the closure ordinals of non monotonic I19-inductive definitions of a
special kind (see [13]). So it is much to be hoped for that a proof theory of KPM
would be a starting point for a proof theory of the superjump as well as a proof
theory of non monotonic inductive definitions.

The purpose of this paper is to deliver a perspicuous ordinal notation system,
which is sufficient for the proof-theoretic treatment of KPM.

There is previous work, which is important for this paper: In [3], Buchholz
invented his yp-functions. The paper [4] by Buchholz and Schiitte presents the
definition of the functions p, for k ranging over regular cardinals > w below I,
where I, denotes the first weakly inaccessible cardinal. In [8], Jager extended this
hierarchy to obtain collapsing functions y, for every x < 4,. Here, A4, stands for
the first cardinal p which is a limit of g-inaccessible cardinals for every o<p
(see 1.1). The y-functions are closely related to the @-functions. Pohlers (see [11])
extended the @-hierarchy of functions by defining a doubly indexed hierarchy
AP. O@gaf, which is also based on g-inaccessible cardinals. Eventually, Schiitte (in
[15]) extended Jdger’s notation system. To get “names” for cardinals of a higher
degree of inaccessibility, Schiitte goes back to an old concept of his, the
Klammersymbole.
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1. Basic Notions and the Functions I,

We work in Zermelo-Fraenkel set theory with the axiom of choice and, in addition,
assume the existence of a weakly Mahlo cardinal (see [10, p. 61]). Throughout, let
M denote the least weakly Mahlo cardinal.

Conventions. Small greek letters range over ordinals. (a, ), (o, 8], [, B), [ S]
denote intervals of ordinals in the usual sense.

ON stands for the class of ordinals and CARD for the class of uncountable
cardinals. LIM denotes the class of limit ordinals.

The variables k, 7, 7, k¥, o/, t" are reserved for regular uncountable cardi-
nals <M. If X is a set of ordinals, we write X <o as an abbreviation
for VEleX=>¢é<a). XY =Va(oeX =>aeY). a¢Y:ie1(zcX) aZfi=a
<Bva=§.

An ordinal o is an additive principal number if 0 <a and é+n <afor all &, n<a.
AP denotes the class of additive principal numbers.

If X is a class of ordinals, there exists a unique increasing function F such that
the domain of F, dom(F), is an ordinal « or ON and X ={F({): {edom(F)}. F is
called the enumeration function of X and we use Enum(X)to denote F. We say that
a limit ordinal A is a limit point of X if 1=sup(XnJ).

cl(X):= Xu{a:a is limit point of X}.

1.1. Definition. A cardinal a is g-inaccessible if it is regular and limit of
o-inaccessible cardinals for all & < g. So the 0-inaccessible cardinals are exactly the
regular cardinals, hence the 1-inaccessibles are weakly inaccessible cardinals. By
induction on g, we define

I,:=Enum(cl{g: u>w A pu is g-inaccessible})

and write Toa in place of I (a).

k is weakly Mahlo iff  is a cardinal such that for every function f: k-« there
exists a regular cardinal 7 <x such that Ya <z(f (o)< ).

Every weakly Mahlo cardinal pis g-inaccessible for all ¢ < u(see [6, CH.4, 3.4]).
But p is not the first cardinal v such that v is v-inaccessible. There are u cardinals v
below u such that v is v-inaccessible. This is not the strongest statement one can
prove in this connection. Indeed, Mahlo cardinals are larger than any cardinals
which can be obtained by processes like these.

The functions I, are used in [8] to develope a notation system which reflects
some structural properties of the cardinal 4,:=min{&>0:V3,n < &Idn<§)}.

But A, only shares a few properties with M, and likewise the corresponding
notation system is not sufficient for the treatment of KPM.

2. The Veblen Hierarchy and the Functions &,

The Veblen hierarchy is well known and studied in the literature. For references on
these functions we refer the reader to [12] and [14, Sect.13]. Especially [12] is
recommended as a thorough and lucid introduction to this material. Therefore we
just assemble basic properties of these functions.
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2.1. Definition. By induction on «, we define

@,:=Enum({{ e AP: ¥y <a(@,(£)={)})

and write gaff for ¢ ().

So ¢, is just the enumeration function of the additive principal numbers, thus
@O0 =w"

We also consider a cardinal valued analogue of the Veblen hierarchy:

®,:=Enum({ge CARD: Vn <a(®,(1)= )} .

By definition, we then have ®4(&)=¥, .. We write duf for @,(f).

Properties of the function & stated in this paragraph without proof follow
cither immediately from the definition of @ or may be proved like the
corresponding properties of ¢.

2.2. Lemma. (i) pafiec AP; ¢affc CARD.
(i) & <a= @l(pap)=gpap A DL(Pup)=Dupf.
(ili) B<y= paf <oy A Paff < Day.
(iv) a<f = pal< B0 A G0 < Pf0.
V) aZ9a0; a < dal.
(vi) peCARD A q, B<p=> paf<p.
(vii) If u is weakly inaccessible or a limit of weakly inaccessibles, then
Va<uVp < p(Paf < p).

Proof of (vii). Let x be weakly inaccessible. Then Vf <x(P0f =R, , ;<x) since
N, =x. Now assume 0 <a <k and Vi <oV f <wx(Pnf < k). By the regularity of «, to
show VB <w(®af<k) it suffices to prove that X:={{<k:Vp<a(Pnl={)} is
unbounded in k. For d<x we define: (y=8, (,.,=sup{Pn,:n<al,
{=sup{(,:n<w}. Then Vn <a(®n{={)and é <{. Moreover, {, < k by regularity of
x and the assumption above, hence { <k, again by regularity of k. This establishes
~ unboundedness of X. Finally, Va <xVf < k(Paf < k) follows by induction on a.

If u is a limit of weakly inaccessibles and «, f <y, then there exists a weakly
inaccessible x < u such that o, f <y, so Paff<x<p. [

2.3. Proposition. Let f be one of the functions ¢ or ®. Then foff= 79 iff we have
one of the following cases:

1. a<y and = fv6,

2. a=y and =4,

3. y<a and faff=9.

2.4. Proposition. Let f be one of the functions ¢ or @. Then faf < fyd iff we have
one of the following cases:

1. a<y and B < fyd,

2. o=y and <9,

3. y<a and faf<o.

2.5. Proposition

(i) For every ye AP, there exist unique a and <y such that y=paf.
(ii) For every ue CARD, there exist unique a and B < such that p=dup.
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2.6. Definition. An ordinal « is said to be strongly critical if ea0=a. We let SC
denote the class of strongly critical ordinals.

2.7. Lemma. For every ye AP\SC, there exist unique o, §<7y such that y= pap.

2.8. Lemma. For every o¢ APU{0}, there exist unique oy, ...,a,€ AP such that
o=, +...+a, and a>a, = ... 20,

2.9. Definition. (i) y=yp@of:<y=qpaf A a, f<y.
(i) p=ngPof >pu=Pafra, f<y.
(i) o=pNpoyF... o Sa=0 . X ARy, .., 0, EAP A, 2>

v
)

3. The Functions ,

Henceforth we restrict ourselves to ordinals below M™:=min{a>M:aeSC}. In
this paragraph, we define functions y,: M—M for « < M” by transfinite recursion
on a. This hierarchy of functions enables us to define a “collapsing function”
D:M"—M via D(a): = x,(0), which sends ordinals « € [M, MT) below M. The need
to use functions indexed by ordinals from above M to reflect essential features of a
Mahlo cardinal corresponds to the fact that M is not to be obtained by iteration
combined with diagonalization of inaccessibility from below.

For X CM, we set cly(X):=Xu{A<M:41is a limit point of X}.

By x, @, 7, ¥/, @', v we always denote regular uncountable cardinals <M.

3.1. Definition. Every a<M' has a unique expression by means of strongly
critical ordinals <M, the constants 0, M and the functions +, ¢. We denote this set
of strongly critical ordinals <M by SCy(x). The precise definition of SCy(«) is
given by the following induction on a.

1. SC\(0):=SCy(M)=9.

2. SCy(a):= {a} if «<M and a e SC.

3. SCylar) 1= SClety)u...uSCyler,) if o= ngot; +... + .

4. SCy(): = SC(y)uSC(9) if &= ngpyo.

We set a* : = sup(SCy(o)u{0}).

3.2. Lemma. o* <M.
Proof. Obvious. []

3.3. Inductive Definition of B(c, ) and y, for f<M and o <M.
(B1) BuU{0, M} CB(x, f).
(B2) y=ney1t. -+ AV B0 ) =y B (g, f).
(B3) y=nppdn A d,neB"(, f)=yeB"" (a, ).
(B4) neB(o, f)Ay<m=>yeB""(a, B).
(B5) 8,neB™a, f) Ad<aAnedom(x;) = x,(n)e B o, B).
(B6) B, f)=U{B"a, f): n<w}.
(B7) x,=Enum(cly({x: k¢ B(x, k) A e B(a, k)})).

Note that in the definition above (and always) = and x range over regular
cardinals, which are uncountable and <M.

We write yaff for y,(B) and set IN(a): = {x: x ¢ B(e, k) A € B(at, k)}.
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3.4. Remark. The definition of the functions y, resembles that of the Feferman-
Aczel functions @, (see [1] and [14]). The main difference is that for o> 0 every
element of IN(«x) must be a weakly inaccessible cardinal. Hence, %,(0), already, is a
cardinal which can’t be proved to exist in ZFC. The first conjunct in the definition
of IN(«) is the essential part, the second requirement in the definition of IN(«), that
o € B(a,, k), is raised for technical reasons. Such a “normality” condition has already
been used by Buchholz (see [2]) to recursively define the functions @,. If y. denotes
the function which is defined without the constraint « € B(«, ), then the hierarchy
(1)« <mr grows more slowly than the y,-hierarchy, but it eventually gets the same
job done. Mainly, the condition a € B(a, k) is raised for bypassing lots of difficulties,
and thus accounts for the tractible nature of the y,.

3.5. Lemma. (i) <y A B<6<M = B(a, f)CB(y, d).
(i) AeLIM A A<M = B(a, ) =U{B(a, &): ¢ <A}
(iti) xOo=¥N,,,=P0x for a <M.
(iv) pe CARD A u<M A u¢ B(a, ) = B(a, )ynM = pu.

Proof. (i): By induction on n, one easily sees that B"(a, §)C B(y, ).

(ii): By (i) U{B(a, &): £ <A} CB(a, A). BY(or, A)CJ{B(, &): £ < A} follows by in-
duction on n.

(iii): In the inductive definition of B(0, x), the clause (B5) does not apply. Since
d, <k implies @dn <k by 2.2 (vi), we have k ¢ B(0, x) for every regular uncountable
cardinal k<M. This proves (iii).

(iv): Suppose ye B, uy)nM. We prove by induction on »n that y<pu. If
y € B"(a, )~ M holds by (B1}+B4), then y < ufollows either trivialty or by induction
hypothesis using 2.2 (vi) in the case y=yz@dn. Now suppose y € B, 1) holds by
(B5). Then y = xdn where 6 <a. This implies y0(y+1)=¥N, ., € B(x, p) by (B5) and
(iii). Application of (B4) yields ¥, ; CB(a, p), hence y<pu since p¢ Bo, g). O

3.6. Lemma. For every a<M", y,: M—>M is a normal function with dom(y,)= M.

Proof. 1t suffices to show that IN(x) is unbounded in M, ie. Yy<M36eIN(x)
(y <9). Moreover, thanks to the demand that M be a weakly Mahlo cardinal, we
only have to show that

Z,:={v<M:veCARD A v¢B(a,v) A xeB(a, v)}

is closed and unbounded in M because this implies that Z, contains M regular
cardinals. Suppose {v,:# <A is an increasing sequence of elements of Z,, where
A<Misa limit. Let v=sup{v,:#<1}. By 3.5 (ii), ve B(«, v) would imply v e B(a, v,)
for some 1 < A thus the contradiction v, € B(, v,) by 3.5 (iv). This establishes ve Z,,,
hence closure of Z,.

Now assume o* < f < M. This implies SCy() C B(«, 8). Consequently, o € B(a, §)
by (B2),(B3). By induction on n, we show that |B*(«, )] <M, where |B*(«, f)| denotes
the cardinality of B*(«, f). This is clearly true for n=0. In case n=m+1, by
induction hypothesis and the regularity of M, there exists a v<M such that
B™(a, )M Cv. Therefore, B*a, ) is contained in the closure of the set
X :=B"(a, f)uv with respect to the mappings +, ¢, and y; for £,n€ X and ¢ <a.
Since |X|<M, we obtain |B%a, f)] <M. This completes the induction. As a
consequence, we get [B(a, f)] <M and for {: = min{x: ¢ B(a, f)} that { <M. By the
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definition of { and B(«, {), we obtain B(«, f)=B(«, {), hence { ¢ B(x, {), thus (€ Z,.
Therefore, since we started with an arbitrary f<M such that o*<f and
established the existence of a { € Z, such that § <{, Z, must be unbounded in M.

Since Z, is closed and unbounded in M, we obtain that IN(x) is unbounded in
M, hence, by definition, y,: M—M is a normal function. []

3.7. Lemma. (i) o€ B(o, yopf).
(ii) ya0, yo(n+1)e IN(w).
(iii) yof ¢ B, yoB)-
@iv) B(a, yaf)nM = xop.
(V) B<d<M = yaff < yad.

Proof. (i), (ii), and (v) are obvious by the definition of yaf.

(iii): Thisis immediate if §is a successor or §=0. Now suppose that fis a limit.
yof € B(a, yof) implies the existence of a # < such that yaf e B(a, yo(n+1)), and
thus yoa(n + 1) € B(a, you(n + 1)) by 3.5 (iv) since yoln + 1) < yaf and ya(n + 1) € IN().
Contradiction.

(iv) holds by (iii) and 3.5(@v).

38. Lemma. (i) y=pgy1+ ... +7,€B(, )=y, ..., 7. € B, f).
(i) y=nredn eB(a, )= 5,n€B(o, f).
(iii) y€B(x, B)<=y* e B(a, B).
(iv) o*<yap.
(V) xydeB(a, xaf) =>7y,0 € B(a, xof) A xyd < yop.

Proof. (i): It is easily seen, by induction on m, that yeB™(«,f)) implies
Y15 ---» Yu € B™a, B). The proof of (ii) proceeds by the same induction.

(iii) is an immediate consequence of (i) and (ii) if one inducts on y.

(iv): It follows from (iii) and 3.7(i) that o* € B(e, xo8). Hence a* < xS by 3.2 and
3.7(iv).

(v): Suppose yyoeB(a, yaf), then yyd<yaf by 3.7(iv). Since y*, 6=y,
another application of 3.7(iv) yields y*, 6 € B(a, xo8), so y € B(a, yaf) according to
@). O

Using 3.7(iv) and 3.8(iii), we obtain
3.9. Lemma. ye B(o, yaf)<y* <yap.

3.10. Definition. u=\pxaf:<pu=yaf A p<p.
3.11. Lemma. yaff=yy0 A B, o< yaff=>a=yAf=4.

Proof. By 3.8(iv), yaff = yyé implies y* < yaf, thus y € B, yaf). Suppose y < «. Then
1yo € B(o, yauf) follows from 7y,5eB(o, yaf) by (BS5). But this contradicts
xoB ¢ B(a, youf). By symmetry, we also exclude a<y, so a=y. Since x, is an
increasing function, this proves the assertion. []

3.12. Lemma. y<a AyeB(a, xaf) A 6 < yaff = yyd <xop.

Proof. From the hypothesis we obtain ypdeB(a, yaf), thus yyd<yaf by
3.7Gv). O
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3.13. Lemma. Assume p=yxaf and v=ygxyd. Then u<v holds iff one of the
following cases holds:

1. a<y, B<v and aeB(y,v),

2. a=yand f<y,

3 y<aand (uLdovy¢Ba, p).

Proof. If a <y, then u<v<>f<vAaeB(y,v)holds by 3.8(v) and 3.12. In case a =7,
we have u<v<f<y because y, is an increasing function. Now suppose y<ao.
From p <6 v y¢B(a, 1) we obtain u <v, this is because é <v and y € B(y, v)C B(a, v).
Since d<uAyeB(a,p) implies veB(x, 1) and moreover v<pu, we also have
u<v=pu<dvy¢B(a, ) in this case. This proves our assertion. []

From 3.9 and 3.13, we obtain the following characterization of p<v:

3.14. Corollary. Assume u=yof and v=ygyyd. Then u<v iff we have one of the
following cases:

1. a<y, B<v and a*<v,

2. a=y and <y,

3. y<aand (uLov usy*).

3.15. Lemma. Let p=\zPaf <M, 0<ua and let v=yzyyd. Then we have:
(i) p*v.
(i) p<ve@=0Apu<d)vO0<yro,f<v).

Proof. If 0 <y, then v is weakly inaccessible or a limit of weakly inaccessibles, thus
(i) and (i1) follow from 2.2(vii). If y=0, then v= @04, so (i) and (ii) hold by 2.3 and
24. O

4. Relations between I, and %,

In this paragraph, we show that the functions I and y, for « < A4, coincide on M,
where A, denotes the least ordinal {>0 such that Vé,n < {(Ién<{).

4.1. Lemma. By recursion onn, we definedy=0and d,, =x3,0. We set A= sup §,.

(i) 3,<yMOAJ,<d,1.

(i) Vo< A € B(a, 0)).
(i) Ya<AVB<M[Iof=yaf].
(iv) Ag=sup{d,:n<w}.

Proof. (i): This is easily verified by induction on »n using 3.13.

(ii): Suppose a<A. Then there exists n such that «<d, Hence we have
oeB(J, +1,0) since J,CB(J,. 1,0). Let # be minimal with the property o e B(x, 0).
The above discussion shows 5 < A. If =0, then o€ B(e, 0) holds. In case 0 <, we
have n=y+1 for some y, so a ¢ B(y,0) and a e B(y + 1, 0). If y ¢ B(y, 0), then one sees
easily by induction on n that B*(y + 1, 0) CB(y, 0), which leads to the contradiction
B(y+1,0)=B(y,0). Hence yeB(y,0). If y=0, then y<a If 0<y, then
20(y +1)CB(y,0), thus y<a since a¢ B(y,0). This verifies y+1<a. Hence, from
aeB(y+1,0), we obtain a e B(x,0).
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To show (iii), we proceed by induction on a<A. One has y08=I08. This is
because x ¢ B(0, ) for every regular x < M. Now suppose that the assertion is true
for £ <a. If k is a-inaccessible, then V¢ <aVn <x(Ién=yén<k), hence k ¢ B(x, k).
According to 3.5(iv), from « ¢ B(e, k), we get yén <k if ¢ <a, £ € B(a, ) and y < k. By
(ii), we have &eB(a, k) for every &<a, thus V& <aVy<x(x&n=1&n<k), which
proves a-inaccessibility of k. So we have established that IN(e)={k<M:w <k Ak
is a-inaccessible}, which becomes V<M (yaf =Iap). The proof is complete.

(iv): If &, n< A, then there exists n such that &, 5 <4, so I&np=y&n <4, , by (iii)
and 3.13, hence 4,< 1. Now let us show that §, < A,. The case n=0 is trivial. If
n=m+1, then é,, < 4, by induction hypothesis, so 6,=16,0< A4, by (iii) and the
definition of A, Hence A< A4, and we are done. []

4.2. Corollary. (i) 4, <yMO.
(i) Ya<AVB<M(Iaf=yapf).

5. The Functions v,

In this paragraph we define ordinal functions y, : M -« for all regular cardinals x
of the shape yaf. v, “collapses” elements of M’ below k. The invention of these
functions is due to Buchholz. The article [ 5] presents the definition of the functions
y, for x ranging over regular cardinals > w below the first weakly inaccessible
(hence for successor cardinals). In [8], Jager extended the hierarchy to obtain
collapsing functions vy, for every x < 4,. Our exposition here is inspired by [8].
5.1. Definition. (i) R:= {y00:a <M }U{y(f+1):a <M’ A f<M}.
(i) For keR we set

K_={xotﬁ if x=ya(f+1)

o if k=yal

Convention: In this and the following paragraphs, k, 7, 7, k', 7', ' are supposed to
range over elements of R.

5.2. Lemma. (i) k™ <x.
(i) If k=yngxopB, then a* <x~.

Proof. Immediate from 3.8(iv). [

5.3. Inductive Definition of C,(x) and y,(x) for « <M" by recursion on a.
(C1) k" u{k~,M}CClw).
(C2) y=npV1+ -+ WAV 7 €Cl@) =y e C H(a).
(C3) y=np@dn A d,neCy=>yeCi (a).
(C4) neClnkry<nAaneR=yeCl* )
(C5) y=nrpxn A 3,1 € Cifa) =y C™ ().
(C6) y=png P AS,neCHOAV<IAS, <M=y Cr(a).
(CT) B<anm, BeCia)Afe Cuf)= v (f) e Ci H(a).
(C8) Cm)={Cia):new}.
(C9) y(0)=min{¢: L ¢ Cw)}.
We write wxa for p,(«).
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5.4. Lemma. (i) |C. (o) <x (|C(2)|:= cardinality of CJa)).
(ii) yroe(x™,K).

Proof. (i): It is enough to show that |C}(«)| < k. This is easily accomplished by an
induction on n using the regularity of x.
(ii) follows from (i). []

5.5. Lemma. (i) a <= C () CC(B) A pra = prf.
(i) a<praeCyo)=pro<ypxp.
(iii) xe Cy).
(iv) proe SC.
(v) p=npxén = p+ypra.
(vi) u=ne®én = p+ypra.

Proof. (i) is obvious if one passes through the inductive definitions of the sets.

(ii): By (i), from a< B and ae C, (), we obtain ae C,(f)np, thus prae C(f)
holds by (ii) and (C7), so ko <ykp since wrf ¢ C(B) and ypra Syxp.

(iii): Suppose x=ygxon. If =0, then §*=«", hence SCy(d)C C,(«), which
implies 6 € C(x) by (C1)}H{C3), thus ke C, () by (C5). If n={+1, the discussion
above shows that 6eC,(a), as well. This is because 6* <k~ holds by 5.2(ii).
Moreover, we have { <k~ +1CC, () in this case, so k= x({ +1) e C («) thanks to
(C1)~(C3) and (C5).

(iv) follows from closure of C («) under + and ¢.

(v): Suppose u=ypxén. Then &*, n<u. So, if p=1yka, then &*, ne C («), thus
ueC (o), which contradicts pra ¢ C (o).

(vi): Suppose, for a contradiction, p=\g@En=yxa. Then ¢ n<yka, so
&, neC, (o), which yields ywro=peC, (o). Contradiction. []

5.6. Lemma. (i) ymy<k<m=ypny<K_.
(i) k<m=>ynyé(x ,Kx).

Proof. (i): Suppose k= ypxBE. Then we have f*, £ <« ™. This shows that k= <ymny
implies f*, £ € C,(y), whence k€ C(y). So if k~ <yny and x < hold, then x CC,(y)
by (C4), which ensures that x <ymny. This proves our claim.

(i) follows immediately from (i). [

5.7. Proposition. C,(x)nr=1pxo.

Proof. Let k=yBE If B>0and ne C (x)nk, then we get n < x0( +1) CC (x)nx by
(C5) and (C4), and thus the assertion. So we only need to consider the case §=0.
We induct on n to prove Ci{a)nx Cyxka.

If 6 € C* ()~ holds by (C1){C4), then § < pka follows either trivially or by LH.
(=induction hypothesis) using 5.5(iv) in the case of (C3).

Assume that § € C*(a)nk holds by (C5). Then & = ygxy{ for some y,{ € Ci™ ().
By LH., we know that { <xa. Since § <x = x0¢, either y=0Ar{<&or0<yAd=¢
holds by 3.13. In the first case, we get § <« ~, hence 6 <yxo. ¢ Sk~ implies 6 < yra
in the second case.

If 6 = \p @y € C{o)nk holds by (C6), then 0 <y. Therefore, we obtain x00 =0
< y0&=x, hence d <<k~ <yxa.

Finally, let us assume that é=ynyeClya)nk, where yeC,(y), y<a and
7,9eCt™ Y(a). If = <k, then we have n <yxa by LH., whence § <yxko. If 1 =¥, then
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o <yxa follows from 5.5(ii). Now suppose x <=n. By 5.6(ii), since yny <k, this
enforces yrny <k, thus d<yxo. []

5.8. Lemma. Let n<x.
(i) = =Zypxo = yprf<yko.
(i) pro<m=ypra<ynf.
(iii) pra+pnp.

Proof. (i) holds since pnfi<mn.
(ii): Suppose yra <z. Then wra <7~ holds by 5.6(i), hence yra <ynp.
(iii) is a consequence of (i) and (ii). [

5.9. Corollary. yra=yrfracC()APeC(f)=>Krk=ntAra=0.
Proof. 5.8(iii) and 5.5@). O

5.10. Proposition. Let o€ C,(x) and € C(B). Then wrf <wxa iff we have one of
the following cases:

(1) n<k Am<yxo,

(2) n=kAf<a,

3) k<mAprf<k.

Proof. Suppose n<x. Then clearly (1) = wnf < yka. If prf < pxa, then 7 Sypro by
5.6(ii), so = <yxa holds by 5.5(v). This establishes ynf <ypxa =>(1). In case n=x,
the assertion follows from 5.5(ii).

Now suppose k <. In this case, we have yrf ¢ (x~, k) by 5.6(ii), hence (3) holds
iff prf<ypra. O

5.11. Definition. y= ypypxo:<>y=ypra A aecC.(a).

5.12. Lemma. (i) y=ngp1+... +7,€CH) = 1, - -, Yu € Ci().
(i) y=nplne Cl(0) vy=nrPlne Ca) = &, 1€ CX(o).
(iii) y=nexén e Cr(@) = & neCyla).
(iv) y=xéneCla)nr =¢,neC ).
(v) n<k Ay=ypnfeCla)=>neCx).
i) kErak” <yrfay=yprfeClo)=pf<anm feCla)
(vil) reC(a)=n" €C,(a).

Proof. One easily proves (i) and (ii) by induction on m.

(iii): Suppose y=yrxéneCh(«). We proceed by induction on m to show
&,neC, (). According to 3.15(i) and 5.5(v), y € Ci#(e) must hold by (C1),(C4) or (C5).
If this is the case via (C1) or (C4), then &* neC,(x), thus & neCx). In the
remaining case, the assertion follows from 3.11.

(iv): By 5.7, the hypothesis yields &*,n<y<yka, so &* neC.x), thus
& neCla).

(v): By 5.6(ii), = <k = ypra ¢ (n~, w). Hence our hypothesis implies 7 < ypko, so
r<yka by 5.5(v), and we are done.

(vi): If k<m and «~ <ynpf, then k <ynf holds by 5.6(ii), hence ynf e C (o)
must hold by (C7), thus n, feC(a) and f<a. If k=m, then f<o and, since
BeC.(B), we also have feC,(x). Moreover, ke C, () by 5.5(iii). This proves the
claim.

(vii) follows from (i}iii). [
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5.13. Lemma. If f<yof, then:

(i) xaB<yrl<>yaf<w A yafeCyd).
If y=ngPap, then:

(i) y<yxl<eo, f<pra Ay <k.

Proof. (i) and (ii) follow from 5.7. [

The next lemma provides a characterization of the relation f < yaf by means of
subterms of « and f, solely.

5.14. Lemma. Let <M.
(i) B¢SC = f<yap.
(ii) If B=npxy0, then: B<yaf<>y<avpf=<a*.
(iii) If B=npyxé and k= ypxyd, then: f<yofpsySavirZa*vagCld).
@) If B=npPyd and 0<y, then: f<yoffi<>0<a.

Proof. (i) is obvious by 2.2(vi).

(ii): “=":a<y A a*<Byields that « € B(y, ), and, moreover, V¢ < f(yaé < f) by
(B5) and 3.7(iv), which becomes yof=p.

“<=": Since a*<yoaB, we clearly have f=a*=f<yaf. If y=a, then
B=yad<yap since 6<p. Now suppose that y<a. Note that y*,J <. Hence
y, 0 € B(et, yof). This implies f= xyd < yaf by (B5) and 3.7(iv).

(iii): “=":Froma<y A a* <k AaeCJ&),itfollows that Vi < f(yon € C(E)Nk),
hence yof = B. “<=”: Note that o ¢ C (&) implies a* ¢ C,(£). So, since o* < yaff, we get
kS a* vagC (€)= B<yaf. We know that 6 Sk~ <yké, hence k =yyd < xyp. This
verifies B < yof in case that o =y. Finally, suppose that y <a. If yaff < k, then we get
yaB<y* by 3.14, since §<B=<yaf. But this is impossible because y* <k~ <f.
Hence we have x < yaff, which implies < yof.

(iv) is a consequence of 2.2(ii) and 2.2(vii). [

6. The Notation System T(M)

We isolate a countable set of ordinals, T(M), such that each element of T(M) can be
denoted uniquely using only the symbols 0,M, +, ¢, x, D, p.

6.1. Inductive Definition of T(M) and Gy < w for ye T(M).
(T1) 0, Me T(M) and GO=GM =0.
(T2) y=ngVit+ - +Va AV - T ET(M)
=ye T(M) A Gy=max{Gy,,...,Gy,} +1.

(T3) y=np@dn <M A 8,ne T(M) = ye T(M) A Gy=max{Gé,Gn} +1.

(T4) y=nreOp AM <y AneTM) =y TM) A Gy=(Gn)+1.

(T5) y=nrxon A 8,1 T(M) = ye T(M) A Gy =max{Gé, Gy} + 1.

(T6) y=nrPN <M AO0<S A J,neT(M)=yeT(M) A Gy=max{Gd,Gn} +1.
(T7) y=nsyro Ak, aeT(M)Aa<M=yeT(M) A Gy=max{Gxk, Ga}+1.

6.2. Remark. It follows from 2.2(vi), 2.5, 2.8, 3.11, 3.15, 5.5(iv), (v), (vi), and 5.9 that
every ordinal ye T(M) is an element of T(M) due to exactly one of the rules
(T1)HT7) and that its degree Gy <o is uniquely determined.
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6.3. Theorem. TM)NM =C, ,(pE0)NpZ0, where Bi=yep4 10 and
em+1:= 1M +1).

Proof. We set X :=C,,0(wZ0)npZE0 and T:=T(M)nM. Note that T(M) Cey 4 ;-

“C”: By induction on Gy, we show that ye T = ye XnCg0). If y=xpxdneT,
then SCy(6)u{n} CT, so SCy(d)u{n} CXNCz(0) by LH. Since d <gy ;, we obtain
yon € Cx0)nE, thus yon <ypZ0 holds by 5.7, hence ye XNC0). If y=pnpproeT,
then k,a €T, so k,ae XNCg(0) by L.H. This implies y € XnCg(0). The remaining
cases are easily verified.

“3”: LetX":= C}oo(pZ0)npZ0. We prove X" C T by induction on n. Note that
{C4) does not apply since there is no = satisfying 7 < x00. Suppose y = yppro e X",
Then x, a € C}g4 (wZ0) and a <pZ0. £ <k would imply = € C,(®)nk, and thus lead
to the contradiction = < yka. Hence we have x <Z0 by 5.10. Therefore, by LH.,
we obtain k,x €T, hence y € T. Next suppose y = ypxdn. Then SCy(d)u{n}cX 1,
hence SCy(6)u{n} CT by LH., which implies y € T. Similarly, one proves the other
cases. []

6.4. Lemma. Let o, f§ be elements of T(M), and let 7,0,k e TM)nM. Then:
i) o+ B, 0*e T(M).
(ii) @9, yay, @yd e T(M).
(iii) o* e TM) A Go* <Ga.
(iv) k- eTM)A Gk~ £Gxk.

Proof. Obvious. [
6.5. Lemma. A,=1y(yMO0)0.

Proof. 4, € C,y0(0)is easily shown by induction on n. Now 6, < yMO. Therefore, we
get the inequality “<” by 4.1(iv) and 5.7. To prove “=”, it suffices to show
Cimo(0)nxMOC 4,. To this end, we induct on n. Note that the clause (C7) does not
apply. Now suppose y € Cjo(0)n ¢ MO. If this is the case by (C1)H(C4) or (C6), then
the assertion follows immediately by LH. If y=yxaf, then a, f<yMO, thus
a, < A, holds by L.H. This implies a, f <4, for some n<w, hence y <48, ; <A,
The same argument yields y < A, in case that y=z®Paf with 0<o. []

7. A Primitive Recursive Notation System

We assume that {...» is a primitive recursive coding function on finite sequences of
natural numbers. The function V:T(M)—N is given by the following recursion
with respect to Ga:

£0,0> if a=0

{1,0> if a=M

2, V(ay), ..., V(o> if o=pgot; +...+a,
V()= <3, V(B), V(y)» if  oa=np@fy

<4, V(B), V> if a=npxBy

<5, VB), V> if a=ne®fy and 0<f

<6, V(x), V(B)> if a=ynppxp
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Let TCN be the image of V. The mapping V induces a wellordering <1 on T via
V(B)<a V(y):=>p<y. The rest of the paper is devoted to proving that T is a
primitive recursive set of natural numbers and that <1 allows a primitive recursive
definition. Indeed, this task can be executed by simply exhibiting such primitive
recursive definitions of T and <1, which on its part is independent of the existence
of weakly Mahlo cardinals. Thus, only the wellfoundedness of <1 relies on a large
cardinal hypothesis. But it is also possible to rid of this assumption as will be
shown in a forthcoming paper. Indeed, it is possible to develop the notation system
on the basis of recursively large ordinals by replacing each occurrence of a cardinal
notion by its “recursive analogue”. But then proofs will become more difficult since
the proofs of 3.6 and 5.4(ii) are based on “cardinality” considerations which will no
longer be available, then. So our assumption that there exists a Mahlo cardinal
turns out to be an exaggeration, but it helps simplifying proofs.

Now, in the previous paragraphs, we have already done a lot of work to deliver
recursive characterizations of equality and inequality between ordinals. The main
obstacle which prevents us from converting those results into a recursive definition
of <o and T is that they comprise conditions like y € C,(£). This problem gives rise
to the following definition.

7.1. Inductive Definition of the coefficient sets K,y for y e T(M).
(H1) K, 0=KM=0.
(H2) Kx‘y=ny1UUKnyn lf Y=nrF/1 +... +'yn
(H3) K,y=K,6UK,n if y =Ny Or y=npxdn OF y =Np 7.
(H4) If y = \szp7f, then

0, if y<x~
K.y=y K.7, if x"<yAn<k.
{BIuK, UK, B, if k <yAkZn

7.2. Lemma. Let ye T(M). Then: ye C (§)=K,y<&.

Proof by induction on Gy. We set C:=C(¢), Ky:=K,7.

1. If v is not of the shape w=f, then the assertion follows from the I.H. using
5.12(1), (ii), (iii).

2. Suppose y = \rrp.

2.1. y<x~. Then yeC and Ky=0<¢.

2.2, k” <yarn<k.FromyeCweget teCby 5.12(v), thus Ky=Kn < &by LH.
If Ky <&, then ne C by LH,, so n<yké, which implies ye C.

2.3. Kk~ <y Ak<Zn Suppose ye C. By 5.12(vi), we then have n, fe C and S <.
So the LH. yields KnuK g < &, hence Ky < £. Vice versa, if Ky <, then f<¢ and,
by LH., =, feC, thus ye C by (C7).

We now turn to a definition which will allow us to decide for o, f € T(M)
whether o, B<paf or a, f < Papf.

7.3. Inductive Definition of e(y) for ye T(M).
1. e(y)=0if y¢ AP.
2. e(y)=ua if y=npeop.
3. e(y)=y otherwise.
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7.4. Inductive Definition of E(y) for ye TIM)nM.
1. E(y)=0if y¢SC or y= 308 or y=\gp(x0x)B, where o< yOo.
2. E(y)=a if y=npPaf and O<a.
3. E(y)=1y otherwise.

7.5. Lemma. Let a, f§ be elements of T(M). Let d,ne TM)nM and 0< 9. Then:
(i) a,B<paf<=ef)<an{0<fve(r)<ava=0]
(i) d,n<Pon<E(n)<oA[0<nvE(@B)<d].

Proof. The proof consists of a straightforward but cumbersome distinction by
cases using various results from earlier paragraphs. But this checking is best done
on scratch paper. []

Now, thanks to 7.2, it is fairly clear by 2.2(vi), 2.4, 3.14, 5.5(v), (vi), 5.10, 5.13
(for <), and 5.14, 7.5 (for = yz) how to give a simultaneous inductive definition of
the set T(M) and the relations < and = s on T(M), which can be converted into a
simultaneous primitive recursive definition of T and <1. We omit the details, since
this would amount to a mere repetition of the content of the above mentioned
results.

7.6. Remark. Let C () denote the set defined in the same way as C (o) except for
the omission of clause (C6) (closure under ®). Let Pxa: = min {¢: ¢ ¢ C,(a)}. Then it
can be shown that {(x10)0= @10, P, 1 o)+ 1 = XEx10)+ 10 and P(xaB)0=y(xaxB)0 for
1 <aand yaB € R. So we could as well have chosen to define our notation system on
the basis of the function % without requiring closure under @. The main reason
why we have included the function @ in the build-up of T(M) is our desire to
express the proof-theoretic ordinals of several subsystems of KPi by means of
ordinals of T(M). By using @, those notations become more transparent.
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