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Abstract

Gödel initiated the program of finding and justifying axioms that effect a significant
reduction in incompleteness and he drew a fundamental distinction between intrinsic
and extrinsic justifications. Reflection principles are the most promising candidates
for new axioms that are intrinsically justified. Taking as our starting point Tait’s
work on general reflection principles, we prove a series of limitative results concern-
ing this approach. These results collectively show that general reflection principles
are either weak (in that they are consistent relative to the Erdös cardinal κ(ω)) or
inconsistent. The philosophical significance of these results is discussed.
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The incompleteness phenomenon in set theory provides us with natural state-
ments of mathematics that cannot be settled on the basis of the standard ax-
ioms of set theory, ZFC. Two classic examples of such statements are PU (the
statement that all projective sets admit of a projective uniformization) and
CH (Cantor’s continuum hypothesis). This leads to the program of seeking and
justifying new axioms which settle the undecided statements. This program
has both a mathematical component and a philosophical component. On the
mathematical side, one must find axioms that are sufficiently strong to do the
work. On the philosophical side, one must determine, first, what would count
as a justification and, second, whether the axioms in question are justified. In
this paper I will investigate these two aspects of one promising approach to
justifying new axioms—the approach based on reflection principles. 1
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1 Introduction

The question motivating this work is: Can intrinsic justifications secure reflec-
tion principles that are sufficiently strong to effect a significant reduction in
incompleteness? To render this question more precise I will discuss the notions
of an “intrinsic justification” and a “significant reduction in incompleteness”
(in the present section) and the notion of a “reflection principle” (in the next
section).

Intrinsic versus Extrinsic Justifications. In his classic paper on the continuum
problem (Gödel (1947) and Gödel (1964)) Gödel drew a fundamental distinc-
tion between intrinsic and extrinsic justifications. The discussion pertains to
the iterative concept of set, that is, the concept of set “according to which a
set is something obtainable from the integers (or some other well-defined ob-
jects) by iterated application of the operation “set of” ” (Gödel (1964), p. 259).
Gödel maintains that the “axioms of set theory [ZFC] by no means form a
system closed in itself, but, quite on the contrary, the very concept of set on
which they are based suggests their extension by new axioms which assert the
existence of still further iterations of the operation “set of” ” (260). He men-
tions as examples the axioms asserting the existence of inaccessible and Mahlo
cardinals and maintains that “[t]hese axioms show clearly, not only that the
axiomatic system of set theory as used today is incomplete, but also that it
can be supplemented without arbitrariness by new axioms which only unfold
the content of the concept of set as explained above” (260–261, my emphasis).
Since Gödel later refers to such axioms as having “intrinsic necessary” I shall
accordingly speak of such axioms being intrinsically justified on the basis of
the iterative concept of set. 2

The notion of an intrinsic justification on the basis of the iterative conception
of set begs for sharpening. It appears that Gödel took it to be a fundamental
form of justification, one that cannot be explained in more primitive terms.
Nevertheless, one can explicate the idea of that Gödel appears to have in
mind by comparing and contrasting it with other notions and by pointing to
examples. One such point of contrast is that of an extrinsic justification, which
Gödel introduces as follows: “[E]ven disregarding the intrinsic necessity of
some new axiom, and even in case it has no intrinsic necessity at all, a probable
decision about its truth is possible also in another way, namely, inductively by
studying its “success”. (261) Here by “success” Gödel means “fruitfulness in
consequences, in particular “verifiable” consequences”. In a famous passage he

2 I shall also employ the more neutral notion of the iterative conception of set
rather that the iterative concept of set since there is nothing in this discussion that
rests on a robust form of conceptual realism such as that of Gödel. For discussions
of Gödel’s conceptual realism see Parsons (1995) and Martin (2005).
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says: “There might exist axioms so abundant in their verifiable consequences,
shedding so much light upon a whole field, and yielding such powerful methods
for solving problems (and even solving them constructively, as far as that is
possible) that, no matter whether or not they are intrinsically necessary, they
would have to be accepted at least in the same sense as any well-established
physical theory” (261).

Let us now consider some examples. Consider first the conception of natural
number that underlies the system of Peano Arithmetic (PA). This conception
of natural number not only justifies mathematical induction for the language
of PA but for any extension of the language of PA that is meaningful. For ex-
ample, if we extend the language of PA by adding the Tarski truth predicate
and we extend the axioms of PA by adding the Tarski truth axioms, then,
on the basis of the conception of natural number, we are justified in accept-
ing instances of mathematical induction involving the truth predicate. In the
resulting system one can prove Con(PA). This process can then be iterated.
Moreover, there are other examples of axioms that are intrinsically justified
on the basis of the conception of natural number; for example, the proof-
theoretic reflection principles. 3 In contrast, the Π0

1 statement Con(ZF + AD)
is undoubtedly not intrinsically justified on the basis of the conception of natu-
ral number; rather its justification flows from an intricate network of theorems
in contemporary set theory. 4

Consider next the iterative conception of set. As in the case of arithmetic
this conception (arguably) intrinsically justifies instances of Replacement and
Comprehension for certain extensions of the language of set theory. But there
are richer principles that are (arguably) intrinsically justified on the basis of
this conception, namely, the set-theoretic reflection principles. These principles
assert (roughly) that any property that holds of V holds of some initial segment
Vα. These principles yield inaccessible and Mahlo cardinals (and more) and
quite likely underly Gödel’s claims in the above passage. I shall return to them
in the next section.

One can also gain a sharper understanding of the notion of intrinsic justifi-
cation by pointing to some of its properties. First, an intrinsically justified
statement need not be self-evident, in part because the justification may be
quite involved (for example, in the case of arithmetic, this would be the case
with reflection principles at the level of some large ordinal approaching Γ0),
in part because it is possible that the underlying conception is problematic
(as, for example, was the case with the Fregean conception of extension). On
the other hand, the notion of intrinsic justification is intended to be more
secure than mere “intrinsic plausibility” (in the sense of Parsons (2000)), in

3 For more on this subject see Feferman (1991) and the references therein.
4 See Section 3 of Koellner (2006) for more on this.
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that whereas the latter merely adds credence, the former is intended to be
definitive (modulo the tenability of the conception).

The question of how far intrinsic justifications can take us in securing new ax-
ioms is important for a number of reasons. First, intrinsic justifications would
seem to be more secure than extrinsic justifications. Second, intrinsic justifi-
cations are more in line with traditional conceptions of mathematics. Indeed
a number of people reject extrinsic justifications. This appears to be true of
Gödel during his early development (as suggested in Section 1 of Koellner
(2006)). And it is certainly true of a number of more recent thinkers. For
example, in a discussion of extrinsic justifications, Tait writes:

It is difficult to reconcile this with the iterative conception of the universe
of sets we are discussing here. On the latter conception, the “intrinsic neces-
sity” of an axiom arises from the fact that it expresses that some property
possessed by the totality of ordinals is possessed by some ordinal. To in-
troduce a new axiom as “true” on this conception because of its “success”
would have no more justification than introducing in the study of Euclidean
space points and lines at infinity because of their success. . . . A “probable
decision” about the truth of a proposition from the point of view of the iter-
ative conception can only be a probable decision about its derivability from
that conception. Otherwise, how can we know that a probable decision on
the basis of success might not lead us to negate what we otherwise take to
be an intrinsically necessary truth? (Tait (2001), reprinted in Tait (2005b),
p. 284) 5

In addition to being interesting because of its rejection of extrinsic justifica-
tions this passage is of interest since in it Tait takes intrinsic justifications
(on the basis of the iterative conception of set) to be exhausted by reflection
principles.

Now, I would not wish to defend this idea. But I do think that reflection
principles are the best current candidates for axioms that admit such an in-
trinsic justification. In any case, reflection principles shall be my focus here
(though in the final section of the paper I shall consider some alternatives).
Our question then is whether intrinsic justifications (on the basis of the itera-
tive conception of set) can secure reflection principles that effect a significant
reduction in incompleteness.

5 I am not convinced of this claim, in part because the analogous claim concerning
the conception of natural number seems to be false. For example, the justification
of the statement Con(ZF + AD) is not “derivable from” the conception of natural
number and yet I do not think that we should be worried that it might “lead us to
negate what we otherwise take to be an intrinsically necessary truth” with respect
to the conception of natural number.
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Significant Reduction in Incompleteness. I will be using the large cardinal
hierarchy as a yardstick to measure the strength of reflection principles. As
one climbs this hierarchy there is an increasing reduction in incompleteness.
To render our question precise it is useful to fix on a specific target. A natural
candidate is the axiom “for all sets X, X# exists”. One reason is that at this
stage the basic results of descriptive set theory which can be established in
ZFC lift to the next level. For example, this axiom implies Π∼

1
1-determinacy. A

more theoretical reason is connected with absoluteness. Shoenfield showed (in
ZFC) that the Σ∼

1
2-theory is “frozen” in that it cannot be altered by set forcing.

This provides one with a method of converting consistency (established via
forcing) into truth since if one shows a Σ∼

1
2-statement to be consistent by forcing

then it must, by Shoenfield absoluteness, be true in V . Now one should like
to be in this situation for the next pointclass, Σ∼

1
3. The axiom “for all sets X,

X# exists” is precisely the level at which this happens, in the following sense:
By results of Woodin, Martin and Solovay, for axioms A which are invariant
under set forcing, the theory ZFC + A will be generically absolute for Σ∼

1
3 iff

it proves that for every X, X# exists. 6 Since, without loss of generality, we
will be able to assume that our axioms (reflection principles) have this feature
of generic invariance, this is a reasonable target in terms of a reduction in
incompleteness.

Our question then is whether reflection principles can effect a significant re-
duction in this sense. The first step would be to show that reflection principles
imply 0#. Now it is often maintained that large cardinals in general are justi-
fied in terms of reflection principles. Gödel appears to have held such a view:

Generally I believe that, in the last analysis, every axiom of infinity should
be derivable from the (extremely plausible) principle that V is indefinable,
where definability is to be taken in [a] more and more generalized and
idealized sense. (Wang (1977), p. 325; Wang (1996), p. 285)

Since the most natural way to assert that V is undefinable is via reflection prin-
ciples and since to assert this in a “more and more generalized and idealized
sense” is to move to languages of higher-order with higher-order parameters,
Gödel is (arguably) espousing the view that higher-order reflection principles
imply all large cardinal axioms. Others appear to say this directly. 7

6 See Woodin (1982).
7 For example, in Martin and Steel (1989), the authors write: “We know of one
proper extension of ZFC which is as well justified as ZFC itself, namely ZFC +
‘ZFC is consistent’. Extrapolating wildly, we are led to strong reflection principles,
also known as large cardinal axioms (One can fill in some intermediate steps.) These
principles assert that certain properties of the universe V of all sets are shared by, or
“reflect to”, initial segments Vα of the cumulative hierarchy of sets” (72). However,
although the authors appear to speak of reflection principles in our sense, they may
have in mind the principles of Reinhardt, which, as will be discussed in the final
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It is of interest then to determine whether such a view can be sharpened and
upheld. We shall do this by taking Tait’s work on general reflection principles
(Tait (1990), Tait (1998a), Tait (1998b), and Tait (2005a)) as our starting
point. Tait (2005a) says that his bottom-up approach may have the resources
to lead beyond the V =L barrier (p. 135). As we shall see, it follows from the
limitative results below that current reflection principles do not imply 0# and
hence cannot lead to a significant reduction in incompleteness (in the sense
indicated above).

2 Reflection Principles

Reflection principles aim to articulate the informal idea that the height of
the universe is “absolutely infinite” and hence cannot be “characterized from
below”. These principles assert that any statement true in V is true in some
smaller Vα. Thus, for any ϕ one cannot define V as the collection which satisfies
ϕ since there will be a proper initial segment Vα of V that satisfies ϕ. More
formally, we shall write this as

V |= ϕ(A) → ∃α Vα |= ϕα(Aα)

where ϕα( · ) is the result of relativizing the quantifiers of ϕ( · ) to Vα and
Aα is the result of relativizing the A to Vα. This schematic characterization
of a reflection principle will be filled in as we proceed by (1) specifying the
language and (2) specifying the nature of relativization.

For the time being our language will be the language of set theory extended
with variables of all finite orders. We shall use x, y, z, . . . as variables of the
first order and, for m > 2, X(m), Y (m), Z(m), . . . as variables of the mth

order. 8 Relative to Vα the first-order variables are interpreted to range over
the elements of Vα and, for m > 1, the mth-order variables are interpreted
to range over the elements of an isomorphic version of Vα+(m−1). The reason
for using an isomorphic copy of Vα+(m−1) and not Vα+(m−1) itself is that we
wish to keep track of the set/class distinction in cases where a set and class
have the same extension. For definiteness, in the case of m = 2 we shall use
α × Vα+1 and we shall interpret class membership “y ∈ (α, x)” as y ∈ x. The
cases where m > 2 are handled similarly.

We now turn to the nature of relativization. If A(2) is a second-order param-
eter over Vα, then the relativization of A(2) to Vβ, written A(2),β, is A ∩ Vβ. 9

section, have a different form.
8 When the order of a variable or parameter is clear from context we shall often
drop the superscript for notational simplicity.
9 More precisely, given our coding apparatus, A(2),β is really {x ∈ Vβ | (α, x) ∈
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This is how A(2) looks from “the point of view of Vβ”. The relativization of
higher-order parameters is defined inductively in the natural way: For m > 1,
A(m+1),β = {B(m),β | B(m) ∈ A(m+1)}. The relativization of a higher-order for-
mula ϕ to the level Vβ is obtained by interpreting the first-order variables to
range over Vβ and, for m > 1, mth-order variables to range over the elements
of Vβ+(m−1).

With these specifications we now have a hierarchy of reflection principles. For
reasons which will become apparent in the next section, we shall restrict our-
selves for the time being to parameters of second order. Let us recall some basic
facts: Let T be the theory ZFC−Infinity−Replacement. If one supplements T
with the scheme for second-order reflection then the resulting theory implies
Infinity and Replacement. Moreover, in the second-order language, one can
express the statement “Ω is (strongly) inaccessible” (where ‘Ω’ designates the
class of ordinals) and so, assuming second-order reflection, there exists κ such
that κ is inaccessible (and thus Vκ |= ZFC). We can then reflect the state-
ment “Ω is an inaccessible greater than κ” to get an inaccessible above κ and,
continuing in this manner, we obtain a proper class of inaccessibles. Thus, Ω
is an inaccessible limit of inaccessibles and hence, by reflection, there exists
κ which is an inaccessible limit of inaccessibles. Continuing in this manner
one obtains the various orders of inaccessibles and Mahlos. One then obtains
weakly compact cardinals and, moving up through the higher-order languages,
one obtains the higher-order indescribable cardinals.

Before proceeding further let us examine some philosophical difficulties with
the claim that higher-order reflection principles are intrinsically justified on
the basis of the iterative conception of set.

The most basic difficulty involves the interpretation of higher-order quantifi-
cation and turns on how one conceives of the “totality of sets”. There are
two conceptions of the “totality of sets”—the actualist conception and the
potentialist conception. The actualist maintains that the totality of sets is a
“completed totality”, while the potentialist denies this. These two viewpoints
face complementary difficulties in providing an intrinsic justification of higher-
order reflection principles. On the actualist view one can refer to the totality
of sets and thus one can articulate the idea that this totality cannot be de-
scribed from below and hence satisfies the reflection principles. However, since
there are no sets beyond this totality it is hard on this view to make sense of
full higher-order quantification over the universe of sets. 10 On the potentialist

A(2)}, but we shall suppress such fine points in the future.
10 One can, of course, simulate the construction of L over the universe for any
ordinal that one can make sense of “internally” with the help of bootstrapping, but
the resulting principles are quite weak. Now, there are some actualists who think
that there is no problem in having full second-order quantification over the universe
of sets. I am thinking here of advocates of the plural interpretation of second-order
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view the closest one can come to speaking of the totality of sets is through
speaking of some Vα. One can certainly make sense of higher-order quantifica-
tion over Vα but now the difficulty lies in motivating and justifying reflection
principles.

I know of two attempts to get around this difficulty. The first is the theory of
legitimate candidates of Reinhardt. The second is the bottom up approach of
Tait. I will say something about the former in the final section of this paper.
Here I will concentrate on the latter.

Tait’s approach takes its starting point in what he calls the Cantorian Prin-
ciple, namely, the principle which asserts that if and initial segment A ⊆ Ω is
a set then it has a strict upper bound S(A) ∈ Ω. This is the principle which
Cantor used to introduce (in a highly impredicative fashion) the totality of
ordinals Ω. It follows (from the well-foundedness of the ordinals) that Ω is
not a set. The problem with this principle is that it involves reference to the
notion of “set” (in contrast to the notion of “class” or “inconsistent multi-
plicity”) and this notion (and distinction) is far from clear. For this reason
Tait replaces the principle with a hierarchy of Relativized Cantorian Princi-
ples. For a given condition C (called an existence condition) such a principle
asserts that if an initial segment A ⊆ ΩC satisfies C then it has a strict upper
bound S(A) ∈ ΩC . It follows (from the well-foundedness of the ordinals) that
ΩC does not satisfy the condition C.

One can now obtain reflection principles by the appropriate choice of an ex-
istence condition. For example, suppose we wish to construct an ordinal ΩC

such that for a given second-order formula ϕ(X), VΩC
satisfies ϕ-reflection,

that is,

∀X(2) ⊆ VΩC

(
VΩC
|= ϕ(X(2))→ ∃αϕα(X(2),α)

)
.

We simply take the condition C on initial segments A ⊆ ΩC to be

∃X(2) ⊆ VA
(
VA |= ϕ(X(2)) ∧ ∀α ∈ A¬ϕα(X(2),α)

)
.

Applying the Relativized Cantorian Principle to this condition and appealing
again to the well-foundedness of the ordinals, we have that ΩC does not sat-
isfy C, that is, VΩC

satisfies ϕ-reflection. The trouble is that this method
is too general. For example, suppose we wish to introduce ΩC′ such that
VΩC′

satisfies that there is a ϕ-cardinal, where ‘ϕ’ could be anything, such
as ‘supercompact’ or ‘Reinhardt’. Let C ′ be the following condition on A:
VA 6|= “There is a ϕ-cardinal”. Applying the Relativized Cantorian Principle
to this condition and appealing to the well-foundedness of the ordinals, we
have that ΩC does not satisfy C ′, that is, VΩC

|= “There is a ϕ-cardinal”.

quantification. It would take us too far afield to consider this view in detail. In any
case, the resulting principles fall under the limitative results to be presented below.
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In short, whether the Relativized Cantorian Principle is intrinsically justified
on the basis of the iterative conception of set will turn on the particular choice
of the condition C that one considers. One would need to argue that in the case
of conditions C that give rise to reflection principles the resulting instances of
the Relativized Cantorian Principle are intrinsically justified. This is far from
immediate. Furthermore, as we shall see, such a case cannot be made for a
broad class of the instances that Tait considers since the resulting principles
are inconsistent. Moreover, it is hard to see how one could draw the line in a
principled fashion.

These philosophical difficulties show that at the moment we do not have a
strong intrinsic justification of higher-order reflection principles. One would
like, however, to say something more definitive. In the remainder of this paper
I will prove a number of limitative results which collectively show that higher-
order reflection principles are either weak or inconsistent.

3 Strong Reflection Principles

The next step is to allow parameters of third- and higher-order. Unfortunately,
when one does this the resulting reflection principles are inconsistent, as noted
by Reinhardt (1974). To see this let

A(3) =
{
{ξ | ξ < α}(2) | α ∈ Ω

}(3)

and let ϕ(A(3)) be the statement that each element of A(3) is bounded. This
statement is true over V but for each α ∈ Ω the reflected version of the
statement, ϕα(A(3),α), is false since {ξ | ξ < α}(2) ∈ A(3),α is unbounded.

This counter-example and related counter-examples force one to forgo negative
statements of the form X(m) 6∈ Y (m+1) and X(m) 6= Y (m) when m ≥ 2. This
leads to the following notions, due to Tait.

Definition 1 A formula in the language of finite orders is positive iff it is
build up by means of the operations ∨, ∧, ∀ and ∃ from atoms of the form
x = y, x 6= y, x ∈ y, x 6∈ y, x ∈ Y (2), x 6∈ Y (2) and X(m) = X ′(m) and
X(m) ∈ Y (m+1), where m ≥ 2.

Surprisingly, even when one restricts the language in this way, there are re-
flection principles which have significant strength.

Definition 2 For 0 < n < ω, Γ(2)
n is the class of formulas of the form

∀X(2)
1 ∃Y

(k1)
1 · · · ∀X(2)

n ∃Y (kn)
n ϕ(X

(2)
1 , Y

(k1)
1 , . . . , X(2)

n , Y (kn)
n , A(l1), . . . , A(ln′ ))

9



where ϕ does not have quantifiers of second- or higher-order and k1, . . . , kn,
l1, . . . , ln′ are natural numbers.

Definition 3 For 0 < n < ω, Γ(2)
n -reflection is the schema asserting that for

each sentence ϕ ∈ Γ(2)
n , if V |= ϕ then there is a δ ∈ Ω such that Vδ |= ϕδ

Definition 4 (Baumgartner) For 0 < n < ω, κ is n-ineffable iff for any
〈Kα1,...,αn | α1 < · · · < αn < κ〉 with Kα1,...,αn ⊆ α1 for α1 < · · · < αn < κ,
there is an X ⊆ κ and an S stationary in κ such that for β1 < · · · < βn, all
in S, X ∩ β1 = Kβ1,...,βn.

Theorem 5 (Tait) Suppose n < ω and Vκ |= Γ(2)
n -reflection. Then κ is n-

ineffable.

Theorem 6 (Tait) Suppose κ is a measurable cardinal. Then, for each n <
ω, Vκ |= Γ(2)

n -reflection

Two questions remain: (1) How strong is Γ(2)
n -reflection? (2) Can one allow

universal quantifiers of order greater than 2?

4 Consistency

Definition 7 For α ≥ ω the Erdös cardinal κ(α) is the least κ such that κ→
(α)<ω2 , that is, such that for each partition P : [κ]<ω → 2 there is an X ∈ [κ]α

such that Card(P“[X]n) = 1 for all n < ω, where P“Y = {P (a) | a ∈ Y }.

Lemma 8 (Silver) Assume α ≥ ω is a limit ordinal. Then the following are
equivalent :

(1) κ→ (α)<ω2 .
(2) For all structures M such that

(a) Card(L (M)) = ω and
(b) κ ⊆ |M |
there is an X ∈ [κ]α which is a set of indiscernibles for M .

Theorem 9 Assume κ = κ(ω) exists. Then there is a δ < κ such that Vδ
satisfies Γ(2)

n -reflection for all n < ω.

Proof. Our strategy is to use the Erdös cardinal to obtain a countable struc-
ture M and a non-trivial elementary embedding j : M → M . We will then
examine the critical point and show that it has the necessary reflection prop-
erties.
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Step 1: Consider the structure N = 〈Vκ,∈, <〉 where < is a well-ordering
of Vκ. Let I ′ = {ι′k} be the indiscernibles of N given by Silver’s lemma. Let
HullN(I ′) be the Skolem hull of these indiscernibles and let

π : M → HullN(I ′) ⊆ Vk

be the inverse of the transitive collapse map. Let I be the image of I ′ under
the transitive collapse. Notice that I is a set of indiscernibles for M and that
by including the well-ordering < in the structure we have ensured that these
indiscernibles, which we will enumerate as {ιk}, obey the key properties (with
respect to M) obeyed by the Silver indiscernibles (with respect to L).

Now let ρ : I → I be an order preserving map which moves the first indis-
cernible ι0. This map uniquely extends to an elementary embedding j : M →
M with crit(j) = ι0. We aim to show that V M

ι0
satisfies Γ(2)

n -reflection for all
n.

As motivation consider a formula ϕ(A1, . . . , Am) ∈ Γn and assume

V M
ι0
|= ϕ(A1, . . . , Am).

This is (equivalent to) a first-order statement in M about the parameters
ι0, A1, . . . , Am. In what follows we will implicitly appeal to such equivalences
in arguments using the elementarity of j to “shift” various facts. We would
like to show that

V M
j(ι0) |= ∃α < j(ι0)

(
ϕα(j(A1)α, . . . , j(Am)α)

)
since, by the elementarity of j (applied to the corresponding first-order state-
ment), this would imply

V M
ι0
|= ∃α < ι0

(
ϕα(Aα1 , . . . , A

α
m)
)

and we would be done. Now we have that

V M
j(ι0) |= ϕι0(A1, . . . , Am).

So we would be done if j(A)ι0 = A. Unfortunately, this is not always true. For
example, consider

A(3) =
{
{ξ | ξ < α}(2) | α < ι0

}(3)

and notice that j(A(3))ι0 6= A(3) since the former picks up {ξ | ξ < ι0}(2).

Step 2: Fortunately, the following suffices:
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Lemma 10 Suppose ϕ(A1, . . . , Am) ∈ Γ(2)
n . If V M

ι0
|= ϕ(A1, . . . , Am) then

V M
ι0
|= ϕ(j(A1)ι0 , . . . , j(Am)ι0).

Proof. Base Case: It will be convenient to separate the second-order vari-
ables from the higher order variables, so let us write ϕ(A1, . . . , Am) as

ϕ
(
A

(2)
1 , . . . , A

(2)
j , B

(nj+1)
j+1 , . . . , B(nm)

m

)
.

Suppose that V M
ι0
|= ϕ

(
A

(2)
1 , . . . , A

(2)
j , B

(nj+1)
j+1 , . . . , B(nm)

m

)
. Since ι0 is inacces-

sible in M ,

C =
{
α < ι0

∣∣∣ 〈V M
α ,∈, A(2),α

1 , . . . , A
(2),α
j

〉
≺
〈
V M
ι0
,∈, A(2)

1 , . . . , A
(2)
j

〉}
is club in ι0. We claim that for α ∈ C,

V M
α |= ϕ

(
A

(2)
1 , . . . , A

(2)
j , B

(nj+1)
j+1 , . . . , B(nm)

m

)
.

The key point is this: Suppose that A(2) ∈ B(3) or B(k) ∈ B(k+1) are con-
stituents of ϕ. If such a constituent is false (evaluated at V M

ι0
) then, since it

occurs positively in ϕ, it does not contribute to the truth of ϕ (evaluated at
V M
ι0

). If such a constituent is true (evaluated at V M
ι0

) then its reflected version
to the αth-level will be true (evaluated at Vα) for every α < ι0.

Now the statement that ϕ reflects to each α in C is a first-order statement
of M about the parameters ι0, C, A1, . . . , Aj, Bj+1, . . . , Bm. Thus, by the ele-
mentarity of j, the corresponding statement holds with respect to the image
of these parameters, that is, the statement

ϕ(j(A1), . . . , j(Aj), j(Bj+1), . . . , j(Bm))

reflects to the club of points j(C) below j(ι0). Since j(C) ∩ C = C and since
C is unbounded in ι0 and j(C) is club, it follows that ι0 ∈ j(C), that is, the
statement ϕ(j(A1), . . . , j(Aj), . . . , j(Bj+1), . . . , j(Bm)) reflects to ι0.

Induction Step: Assume the lemma is true for ψ ∈ Γ(2)
n . Our aim is to show

that it is true for ∀X(2)∃Y (k)ψ(X(2), Y (k), ~A):

V M
ι0
|= ∀X(2)∃Y (k) ψ(X(2), Y (k), ~A)

↔ ∀B ⊆ V M
ι0

[
V M
ι0
|= ψ(B(2), f(B)(k), ~A)

]
→ ∀B ⊆ V M

ι0

[
V M
ι0
|= ψ(j(B)(2),ι0 , j(f(B))(k),ι0 , j( ~A)ι0)

]
→ ∀B ⊆ V M

ι0

[
V M
ι0
|= ψ(B(2), f ′(B)(k), j( ~A)ι0)

]
↔ V M

ι0
|= ∀X(2)∃Y (k) ψ(X(2), Y (k), j( ~A)ι0).

12



In the first equivalence f : P(V M
ι0

) → Pk(V M
ι0

) is a Skolem function. The
second implication holds by the induction hypothesis. The final equivalence is
immediate. The third implication requires further comment: The first line of
the implication provides us with a map

j(B)(2),ι0 7→ j(f(B))(k),ι0

that is defined for each B ⊆ V M
ι0

. We would like to extract from this map a
Skolem function for the quantifier alternation ∀X(2)∃Y (k). Fortunately, (and
this is the key point), for each B ⊆ V M

ι0
, j(B)(2),ι0 = B. Thus,

f ′ : P(V M
ι0

)→Pk(V M
ι0

)

B 7→ j(f(B))(k),ι0

is the desired Skolem function. 2

Step 3: We can now show that V M
ι0
|= Γ(2)

n -reflection, for all n < ω. Assume
V M
ι0
|= ϕ(A1, . . . , An). Then

V M
ι0
|= ϕ(j(A1)ι0 , . . . , j(An)ι0)

by the lemma. So

V M
j(ι0) |= ∃α < j(ι0)

(
ϕα(j(A1)α, . . . , j(An)α)

)
as witnessed by α = ι0. Finally, V M

ι0
|= ∃α < ι0

(
ϕα(Aα1 , . . . , A

α
n)
)
, by the

elementarity of j.

Finally, let δ = π(ι0). Applying π we have that Vδ |= Γ(2)
n -reflection for all

n < ω, which completes the proof. 2

It is important to note that in the above proof we make key use of the fact
that the higher-order universal quantifiers in a Γ(2)

n -formula are second-order.
The proof does not generalize to establish the consistency of Γ(m)

n -reflection
for m > 2 (contrary to what is suggested at the end of Tait (2005a)). The key
step in which m = 2 is used is the step where we derive the choice function
f ′ from f using j. Here it is crucial that the domain of the choice function
be second-order since it is only for second-order parameters B that we can
be guaranteed that j(B)ι0 = B and hence that the derived choice function is
total. To be more specific, the third implication in the induction step of the
key lemma fails for m = 3 since in this case the domain of the derived choice
function is {j(B)(3),ι0 | B ⊆P(V M

ι0
)} which is a proper subset of P2(V M

ι0
).

The question remains whether Γ(m)
n -reflection for m > 2 is consistent relative

to large cardinal axioms. There is a high-level reason for thinking that any

13



reflection principle which is consistent relative to large cardinals is consistent
relative to κ(ω). To see this recall that a canonical class of large cardinal
axioms assert the existence of a nontrivial elementary embedding j : V →M ,
where M is a transitive proper class and that as one increases the agreement
between M and V the reflection properties of the critical point increase. The
limiting case in which M = V was shown to be inconsistent (with AC) by
Kunen. If one drops AC and takes the embedding j : V → V one is in a
situation that closely resembles our situation with j : M →M . The difference,
of course, is that we are dealing with a countable model M and not the entire
universe. However, from the point of view of a consistency proof it would
appear that whatever reflection is provable from j : V → V should also be
provable from j : M → M . Since reflection would appear to be an entirely
internal matter, this is a reason for thinking that any conceivable reflection
principle must have consistency strength below that of κ(ω).

5 Inconsistency

It turns out that the above consistency proof is optimal in that Γ
(3)
1 -reflection

is inconsistent (using a fourth-order parameter). The counterexample is best

thought of in terms of a combinatorial consequence of Γ
(3)
1 -reflection.

Definition 11 Suppose that κ is an uncountable regular cardinal. Let m ≥ 2.
A 1-sequence(m) is a function K : κ → Vκ such that for all α < κ, K(α) ⊆
Vα+(m−2).

Definition 12 Suppose that κ is an uncountable regular cardinal, K is a 1-
sequence(m), and X(m) is an mth order class over Vκ. Then

[K,X] = {α < κ | K(α) = Xα}.

This is the set of points at which X “correctly guesses” K.

Definition 13 Suppose κ is an uncountable regular cardinal and m ≥ 2. Let
D ⊆ κ.

(1) D is 0-stationary (m) iff D is stationary.
(2) D is (n + 1)-stationary (m) iff for all 1-sequences(m) K there exists X(m)

such that [K,X] ∩D is n-stationary(m).

We verify that (the relevant case of) one of Tait’s results generalizes from the
second-order to the third-order context.

Theorem 14 (Tait) Suppose that Vκ satisfies Γ
(3)
1 -reflection. Then κ is 1-

stationary (3).

14



Proof. Suppose, for contradiction, that κ is not 1-stationary(3). We claim that
there exists ϕ ∈ Γ

(3)
1 and a fourth-order parameter T (4) such that ϕ(T (4)) does

not reflect, that is,

(1) Vκ |= ϕ(T (4)) and
(2) for all β < κ, Vβ 6|= ϕ(T (4),β).

Let K : κ → Vκ be a 1-sequence(3) which is a counterexample to the 1-
stationarity(3) of κ. For each X(3) ⊆ Vκ+1 let CX be a club such that

[K,X] ∩ CX = ∅.

Let

T (4) = {(K(2), X(3), C
(2)
X ) | X(3) ⊆ Vκ+1}.

Let

ϕ(T (4)) = ∀X(3)∃K(2)∃C(2)
(
(K,X,C) ∈ T (4) ∧ C is unbounded

)
.

Notice that this is a Γ
(3)
1 -statement about a fourth-order parameter. (We are

implicitly using coding devices to collapse the existential quantifiers and code
the heterogeneous relation T (4) as a fourth-order class T ∗,(4) in such a way that
for all α ∈ Lim, T (4),α is coded (in the same way) by T ∗,(4),α. See Tait (2005a)
for details.)

Claim 15 For each X(3) ⊆ Vκ+1,

(i) Vκ |= “CX is unbounded” and
(ii) for all β ∈ [K,X], Vβ 6|= “Cβ

X is unbounded”.

Proof. (i) This is immediate since CX is club in κ. (ii) Suppose, for con-
tradiction, that β ∈ [K,X] is such that Vβ |= “Cβ

X is unbounded”. Since CX
is club in κ this implies β ∈ CX ∩ [K,X], which contradicts the fact that CX
was chosen to be such that CX ∩ [K,X] = ∅. 2

It follows that Vκ |= ϕ(T (4)), since for each X(3) ⊆ Vκ+1 our fixed K and
chosen CX are witnesses. So we have proved (1).

It remains to prove (2), namely, Vβ 6|= ϕβ(T (4),β), for all β < κ. Suppose, for
contradiction, that β < κ is such that Vβ |= ϕβ(T (4),β), that is,

Vβ |= ∀X(3)∃K(2)∃C(2)
(
(K,X,C) ∈ T (4),β ∧ C is unbounded

)
.

For the particular choice X = K(β), let K
(2)
0 and C

(2)
0 be such that
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(*) Vβ |= (K
(2)
0 , X, C

(2)
0 ) ∈ T (4),β ∧ C(2)

0 is unbounded.

Since (K0, K(β), C0) ∈ T (4),β we have

(a) K0 = Kβ,
(b) K(β) = X ′β for some X ′ ⊆ Vκ+1, and
(c) C0 = Cβ

X′ (where this is our canonical choice for X ′),

where (K,X ′, CX′) ∈ T (4).

Now, in defining T (4) we chose CX to be such that when (K,X,CX) ∈ T (4) we
have

[K,X] ∩ CX = ∅.
Thus, in particular, [K,X ′] ∩ CX′ = ∅, that is, for all α ∈ CX′ , K(α) 6= X ′α.
Now, by the Claim,

(d) Vκ |= “CX′ is unbounded” and
(e) ∀β ∈ [K,X ′] Vβ 6|= “Cβ

X′ is unbounded.”

However, by (b), β ∈ [K,X ′] and so, by (e),

Vβ 6|= “Cβ
X′ is unbounded.”

But by (c), C0 = Cβ
X′ , so

Vβ 6|= “C0 is unbounded,”

which contradicts (*). 2

Theorem 16 Γ
(3)
1 -reflection is inconsistent.

Proof. Suppose, for contradiction, that Vκ satisfies Γ
(3)
1 -reflection. Then, by

the above theorem, κ is 1-stationary(3). We arrive at a counterexample by
constructing a 1-sequence(3) which cannot be stationarily guessed. For α ∈
Lim, let

Aα =
{
{ξ | ξ < γ} | γ < α

}
.

Let KA : κ→ Vκ be such that K(α) = Aα if α ∈ Lim and K(α) = ∅ otherwise.
We claim that for each X(3) ⊆ Vκ+1, [KA, X]∩Lim contains at most one point.
Suppose Xα = KA(α), where α ∈ Lim. If α′ ∈ Lim is such that α′ > α and
Xα′ = KA(α′) then there exists Y (2) ∈ X such that Y (2),α′ = {ξ | ξ < α}, in
which case Y (2),α = {ξ | ξ < α} ∈ KA(α), which is a contradiction. Similarly,
since Xα = KA(α), for each ᾱ ∈ Lim ∩ α there exists Y (2) ∈ X such that
Y (2),a = {ξ | ξ < ᾱ}, in which case Y (2),ᾱ = {ξ | ξ < ᾱ} ∈ KA(ᾱ) and hence
X ᾱ 6= KA(ᾱ). Hence [KA, X] ∩ Lim contains at most one point.
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It follows that X(3) cannot stationarily guess KA since if [KA, X] is stationary
then [K,X] ∩ Lim is stationary, which is clearly impossible since it contains
at most one point. 2

6 Dichotomy

The results of the previous two sections show that the reflection principles we
have considered can be divided into two classes:

(1) Weak: Γ(2)
n -reflection, for n < ω.

(2) Inconsistent: Γ(m)
n -reflection, for m > 2 and n ≥ 1.

Since Γ
(3)
1 comes directly after

⋃
n<ω Γ(2)

n , this classification is exhaustive and
we have a dichotomy theorem: Reflection principles are either weak or incon-
sistent.

One response to this is that although we have a dichotomy with respect to
our coarse classification there is still the possibility that a finer classification
leads to reflection principles which are strong (and so fall outside the scope
of our consistency theorem) and manage to skirt inconsistency. Indeed a finer
classification can be readily obtained by looking not at full universal third-
and higher-order quantification but various restricted forms of these. Setting
aside the problem of motivating such a restriction in a principled way, in this
section we prove a much sharper dichotomy theorem.

To isolate the necessary restriction on the domain of third-order universal
quantification we begin by looking at a series of counter-examples and re-
sponses.

First Modification. Notice that although KA (from the proof of the in-
consistency theorem (Theorem 16)) cannot be stationarily guessed by any
X(3) ⊆ Vκ+1 it can be stationarily guessed by some X(2) ⊆ Vκ; in fact,
it is guessed everywhere by κ(2). This suggests modifying the notion of 1-
stationarity(3) to allow guesses of either the form X(2) ⊆ Vκ or X(3) ⊆ Vκ+1.
However, there is a counterexample to this as well. For α ∈ Lim, let

Bα =
{
{ξ | γ > ξ ≤ α} | γ < α

}
.

Let KB : κ → Vκ be such that K(α) = Bα if α ∈ Lim and K(α) = ∅
otherwise. For X(2) ⊆ Vκ, [KB, X]∩Lim = ∅. For X(3) ⊆ Vκ+1, [KB, X]∩Lim
can contain at most one point.
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Second Modification. One response to the counterexample KB is to re-
strict our attention to “full” 1-sequences(3), that is, 1-sequences(3) such that
for each α ∈ Lim, min{rank(Y ) | Y ∈ K(α)} < α. However, this also has a
counterexample. For α ∈ Lim, let

Cα =
{
α− {ξ} | ξ < α

}
.

Let KB : κ→ Vκ be such that K(α) = Cα if α ∈ Lim andK(α) = ∅ otherwise.
This is a full 1-sequence(3) such that for each X(2) ⊆ Vκ, [KC , X] ∩ Lim = ∅
and for each X(3) ⊆ Vκ+1, [KC , X] ∩ Lim contains at most one point.

Third Modification. One response to the counterexample KC is that al-
though it is full and cannot be stationarily guessed by any X(2) ⊆ Vκ or any
X(3) ⊆ Vκ, it can be recast as a 1-sequence(2) which can be guessed by some
X(2) ⊆ Vκ. More generally, suppose K : κ→ Vκ is a full 1-sequence(3) which is
“narrow” in the sense that for each α ∈ Lim, |K(α)| ≤ |α|. Relative to a fixed
well-ordering let 〈K(α)ξ | ξ < α〉 enumerate K(α). Now define the derived
sequence K ′ : κ → Vκ to be such that K ′(α) = {〈ξ, x〉 | ξ < α ∧ x ∈ K(α)ξ}
if α ∈ Lim and K ′(α) = ∅ otherwise. The sequence K ′ codes K and can
be stationarily guessed by some X(2) ⊆ Vκ. So, to obtain strength, the above
counter-examples suggest restricting attention to 1-sequences K which are
“full” and “wide”, that is, such that (1) for all Y ∈ K(α), Y ⊆ α × Vα and
dom(Y ) = α and (2) |K(α)| > |α|. However, although the restriction to full
and wide 1-sequences(3) rules out counterexamples like KA, KB, and KC it
does not rule out a simple “wide” version of KC : For α ∈ Lim, ξ < α, and
Y ⊆ α, let

Yξ =
{
〈γ, i, j〉 | (γ < α) ∧ (i = 0↔ γ 6= ξ) ∧ (j = 0↔ γ ∈ Y )

}
,

where i and j range over {0, 1}. (The role of the second coordinate is to code
α−{ξ} and the role of the third coordinate is to code Y . Thus we are “tagging”
α− {ξ} with Y .) For α ∈ Lim, let

C∗α = {Yξ | ξ < α ∧ Y ⊆ α}.

Finally, let KC∗ : κ → Vκ be such that KC∗ = C∗α if α ∈ Lim and KC∗ = ∅
otherwise. The idea is that KC∗(α) has 2α-many subcollections, each corre-
sponding to a given Y ⊆ α, each of size |α|, and each such that something
specific happens unboundedly often. This is a 1-full-wide sequence which can-
not be stationarily guessed.

What all of the above counter-examples have in common is that they involve
collections which lack a certain “closure”. To make this precise we concentrate
on third-order classes consisting of second-order class of ordinals. Over Vα such
a class B is canonically coded by a collection of branches through 2α, each
branch being the characteristic function of a second-order class of ordinals. To
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say that a third-order class of second-order classes of ordinals is closed is simply
to say that the associated collection of branches is closed in the standard
topology (where basic open intervals have the form Os = {t ∈ 2α | s ⊆ t},
where s ∈ 2<α.)

The above counter-examples all involve K(α) (for α ∈ Lim) which are not
closed. In each case K(α) is uniformly defined for α ∈ Lim. Moreover, for
each α ∈ Lim, K(α) is missing a continuity point that is inevitably added by
the relativization of any X(3) which correctly guesses K(α′) for some α′ ∈ Lim
such that α′ > α.

The above counter-examples all involve restrictions of the combinatorial notion
of 1-stationarity(3) but our main interest is in restrictions of the notion of Γ

(3)
1 -

reflection. It will therefore be of importance to investigate the connection
between the two.

Since we are interested in reflection principles extending second-order reflec-
tion principles we may assume that the height of the universe Vκ is Mahlo (or
more) and that in any reflection argument we reflect to a level Vα where α is
also Mahlo (or more). Since in this case |Vα| = |α|, we may, without loss of
generality, concentrate on third-order quantifiers which range over P(P(α)).

Let Xc(3) range over the closed third-order classes of second-order classes of
ordinals. This range of quantification is uniformly defined with respect to Vα
for each α ∈ Lim. More generally, let XΓ(3) range over the Γ(3)-third-order
classes of second-order classes of ordinals, where Γ(3) is a pointclass which is
uniformly defined with respect to Vα for each α ∈ Lim. The pointclasses Γ(3)
that will be of particular importance for us are those in the generalized Borel
hierarchy which starts with the closed third-order classes over 2α and proceeds
by iterating the operations of α-union and complementation.

Definition 17 Suppose κ is regular and uncountable. Suppose Γ(3) is a third-
order pointclass as above. A 1-sequenceΓ(3) is a function K : κ→ Vκ such that
there is a club CK in κ such that for all α ∈ CK, K(α) ⊆ 2α is in Γ(3).
A cardinal κ is 1-stationaryΓ(3) iff for all 1-sequencesΓ(3) K there exists X(3)

such that [K,X] is stationary.

Definition 18 Suppose Γ(3) is a third-order pointclass as above. The collec-
tion of ΓΓ(3)

n -formulas is defined exactly as before except that now all third-order
universal quantifiers are replaced with ∀XΓ(3) and interpreted to range over the
pointclass Γ(3).

Theorem 19 Suppose Vκ satisfies Γ
Γ(3)
1 -reflection. Then κ is 1-stationaryΓ(3).
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Proof. The proof is a modification of the proof of Theorem 14. Suppose,
for contradiction, that κ is not 1-stationaryΓ(3). Let K : κ → Vκ be a 1-
sequenceΓ(3) which is a counter-example to the 1-stationarityΓ(3) of κ. For
each XΓ(3) ∈P(P(κ)) let CX be a club such that [K,X] ∩ CX = ∅. Let CK
be the club from the definition of a 1-sequenceΓ(3). Let

T (4) = {(K(2), XΓ(3), C
(2)
X , C

(2)
K ) | XΓ(3) ∈P(P(κ))}.

Let

ϕ(T (4)) = ∀XΓ(3)∃K(2)∃C(2)∃C ′(2)
(
(K,X,C,C ′) ∈ T (4) ∧

C1 and C2 are unbounded
)
.

This is a Γ
Γ(3)
1 -formula. As before, for each XΓ(3) ∈P(P(κ)),

(1) Vκ |= “CX is unbounded” and
(2) for all β ∈ [K,X], Vβ 6|= “Cβ

X is unbounded”.

It follows that

Vκ |= ϕ(T (4)),

since for each XΓ(3) ∈P(P(κ)) our fixed K, CK and chosen CX are witnesses.
It remains to prove that

Vβ 6|= ϕβ(T (4),β),

for all β < κ. Suppose, for contradiction, that β < κ is such that

Vβ |= ϕβ(T (4),β),

that is,

Vβ |= ∀XΓ(3)∃K(2)∃C(2)∃C ′(2)
(
(K,X,C,C ′) ∈ T (4),β ∧

C and C ′ are unbounded
)
.

Notice that C1 = Cβ
K . Moreover, since Cβ

K is unbounded in β and since CK
is club, it follows that β ∈ CK . Thus, X = K(β) is in Γ(3) and hence is
a legitimate substituent for the universal quantifier ∀XΓ(3) in the formula
displayed above. The rest of the proof is as before. 2

Theorem 20 Suppose Γ(3) is a pointclass in the generalized Borel hierarchy

that properly extends the closed classes. Then Γ
Γ(3)
1 -reflection is inconsistent.

Proof. This follows from the previous theorem in conjunction with the earlier
counter-examples. 2
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Because of this one is essentially forced to pare the third-order quantifiers down
to the closed sets. The question remains whether doing so leads to consistent
reflection principles.

Theorem 21 Assume κ = κ(ω) exists. Then there is a δ < κ such that Vδ
satisfies Γc(3)

n -reflection for all n < ω.

Proof. The proof is as before. The key point is that for Bc(3),

j(B)c(3),ι0 = Bc(3).

Thus, we can extract the derived Skolem function in the third implication of
the induction step as before. 2

It remains to consider quantifiers of order beyond third-order. For the rea-
sons noted earlier we may, without loss of generality, concentrate on nth-order
quantifiers which range over Pn−1(α) when interpreted over Vα.

The earlier counter-examples easily generalize to higher-orders and enable
us to isolate the appropriate notion of closure needed to avoid them. For
illustrative purposes we concentrate on the fourth-order.

For α ∈ Lim and for γ < α let Tαγ be the tree consisting of the single branch
b ∈ 2α such that for all ξ < γ + 1, b(ξ) = 1 and for all ξ ≥ γ + 1, b(ξ) = 0. For
α ∈ Lim, let

Dα = {Tαγ | γ < α}.
Let KD : κ → Vκ be such that K(α) = Dα if α ∈ Lim and KD(α) = ∅
otherwise. This is a 1-sequence(4) such that for each X(4) ⊆ Vκ+2, [KD, X]∩Lim
contains at most one point.

To rule out such counter-examples we must restrict to fourth-order classes
that are “closed” in the following sense: Suppose 〈Tγ | γ < α〉 is a sequence
of trees such that each Tγ ⊆ 2<α. We say that the sequence is increasing if
for each ξ < α there is an ordinal f(ξ) < α such that for all γ1, γ2 ≥ η, we
have Tγ1�ξ = Tγ2�ξ. In such a situation we say that the sequence converges to
the limit tree T =

⋃
ξ<α Tf(ξ). A fourth-order class X(4) over Vα is said to be

closed iff it consists of closed third-order classes and is such that it contains the
limit trees of every convergent subsequence of length α. Let Xc(4) range over
the closed fourth-order classes. This is exactly the notion of closure which
is needed to rule out the counter-examples. Moreover, the counter-example
easily generalizes to higher-orders. We let Xc(m) range over the closed sets
of mth-order. As before there is a corresponding generalized Borel hierarchy
at each level and the proof of Theorem 19 generalizes to show that for any
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level Γ(m) of this hierarchy beyond c(m), Γ
Γ(m)
1 -reflection is inconsistent for

all m > 2.

It remains to see that for m > 2 and n < ω, Γc(m)
n -reflection is weak. Work

over Vκ. The key point is that we can code trees T ⊆ 2<κ with b(T ) ∈ 2k in
such a way that

〈Tα | α < κ 〉 converges to T iff 〈 b(Tα) | α < κ 〉 converges to b(T ).

It follows that each closed fourth-order class can be coded by a tree T ⊆ 2<κ.
This, of course, generalized to higher-orders.

Theorem 22 Assume κ = κ(ω) exists. Then there is a δ < κ such that Vδ
satisfies Γc(m)

n -reflection for all m,n < ω.

Proof. The proof is a modification of that of Theorem 9. The key change is
in the inductive step.

Suppose Bc(m) is a closed mth-order class over V M
ι0

where m > 2. Let TB ⊆ 2ι0

be a closed tree coding Bc(m). Let C be the closure of

{α < ι0 |M |= “α is strongly inaccessible”}.

We may assume that the coding has been done in such a way that for all
α ∈ C, TαB codes Bα. Since TB is closed,

j(TB)ι0 = TB.

By elementarity, for each α ∈ j(C),

j(TB)α codes j(B)α.

However, since j(C) is club and since j(C) ∩ ι0 = C is unbounded in ι0,
ι0 ∈ j(C). Thus,

j(TB)ι0 = TB codes j(B)ι0 ,

which means that
j(B)ι0 = B.

This ensures that we can extract the derived choice function as before. 2

Thus we have the following sharper dichotomy:

(1) Weak: Γc(m)
n -reflection, for all m > 2 and n < ω.

(2) Inconsistent: ΓΓ(m)
n -reflection, for all m > 2 and n ≥ 1 and any point-

class Γ(m) containing the first level of the generalized Borel hierarchy
beyond the closed sets.
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7 Discussion

In the above results we have concentrated on quantifiers and parameters of
finite order. However, one can make sense of quantifiers and parameters of
transfinite orders and, for each ordinal α, one can define the notion of Γ(α)

n -
reflection in the natural way. The results generalize to show (i) that to avoid
inconsistency one must impose a closure constraint on the universal quanti-
fiers of third- and higher-order and (ii) that resulting reflection principles are
bounded below κ(ω).

One would like to conclude from this that “reflection principles” in general
are weak. But absent a precise characterization of the notion of a reflection
principle one cannot state, let alone prove, a limitative result to this effect.
Moreover, it is hard to see how one could give an adequate precise characteri-
zation of the informal notion of a reflection principle since the notion appears
to be inherently schematic and “indefinitely extendible” in the sense that any
attempted precisification can be transcended by reflecting on reflection. How-
ever, our main limitative result is also schematic and the proof would appear
to be able to track any degree of reflecting on reflection—the Erdös cardi-
nal κ(ω) appears to be an impassable barrier as far as reflection is concerned.
This is not a precise statement. But it leads to the following challenge: Formu-
late a strong reflection principle which is intrinsically justified on the iterative
conception of set and which breaks the κ(ω) barrier.

It is natural at this point to think of the classic discussion of the justifica-
tion of new axioms in Reinhardt (1974). It is important to note, however,
that this discussion involves a very difference conception of set which has its
roots in Reinhardt’s dissertation (Reinhardt (1967)). This conception involves
supplementing the iterative conception with what one might call the theory of
legitimate candidates. On this view there are a number of “possible alternative
interpretations of V ”, each of which has the form Vα. Let Vα0 , Vα1 be a pair
of such candidates, where Vα0 ( Vα1 . Reinhardt’s basic method for obtaining
strong principles is “to exploit the principle which says that mathematical
truths should be necessary truths” and “[a]ccording to this principle, if the
notion of possibility we have introduced is a good one, something true in one
interpretation of V should be necessarily true, that is, true in all possible al-
ternative interpretations of V ” (Reinhardt (1967), p. 76). In particular, taking
the language to be first-order with parameters from Vα0 one should have that
for each ϕ and for each parameter a ∈ Vα0 , Vα0 |= ϕ[a] iff Vα1 |= ϕ[a], that
is, Vα0 ≺ Vα1 . The next step is to enrich the language to second-order and al-
low second-order parameters. Reinhardt assumes that for each class X ⊂ Vα0

one can “reinterpret” the class over Vα1 as j(X) ⊂ Vα1 in such a way that
(Vα0 , X) ≺ (Vα1 , j(X)). Letting the interpretation function j be constant on
elements of Vα1 this is equivalent to asserting that there is an elementary em-
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bedding j : Vα0+1 → Vα1+1, with critical point α0, that is, it is equivalent to
asserting that α0 is a 1-extendible.

There are a number of difficulties with this approach—there are problems
with the underlying conception and problems with the derivation of strong
principles. One problem with the underlying conception is that the theory of
potential candidates is difficult to defend. For example, since candidates which
come later in the sequence will have greater closure properties than candidates
which come earlier it is hard to defend the idea that they are both equally
legitimate interpretations of V . Another difficulty is that underlying notion
of mathematical modality would require considerable clarification and defense
(especially in light of the fact that mathematics is traditionally thought to
concern objects that necessarily exist).

But even if the underlying conception can be clarified in a satisfactory way,
there are two problems with the derivation of strong principles. The first prob-
lem is what one might call the problem of tracking : In reinterpreting the class
X ⊂ Vα0 as j(X) ⊂ Vα1 there must be some intensional notion at play. Now,
one can certainly track definable classes by using their definitions. But Rein-
hardt wishes to shift every subset of Vα0 and for this he requires an exceedingly
rich collection of intensional notions. Moreover, these intensional notions must
be of a very special sort. For example, it would not do to associate to each set
the concept of being that set since Reinhardt needs to “stretch” the classes.
It is unclear that such a collection of concepts exists. Moreover, even if it
did it would be a further step to assume that it gave rise to an elementary
embedding of the required sort.

The second problem is what one might call the problem of extendibility to
inconsistency : Even if one could provide and defend a theory of the required
intensional objects it would appear that the theory would generalize and lead
to inconsistency. In his dissertation Reinhardt did indeed think that the the-
ory generalized: “[I]n order to extend [the above schema] to allow parameters
of arbitrary (in the sense of V2) order over V0 we simply remove the restriction
X ⊆ V0.” (Reinhardt (1967), p. 79). Here V0 is our Vα1 and V2 is some legiti-
mate candidate Vα2 beyond Vα0 and Vα1 . The trouble is that when one gener-
alizes in this way the result is a non-trivial elementary embedding j : V → V
which Kunen showed to be inconsistent (with AC). (In fact, Kunen showed
that even the existence of a non-trivial embedding j : Vλ+2 → Vλ+2 is incon-
sistent.) By the time he wrote his 1974 paper Reinhardt knew of this result.
The point, however, is that the case Reinhardt makes for 1-extendibles ap-
pears to extend to a case for the inconsistent axiom. Hence, unless one can
give principled reasons for blocking the extension, the case falters.

One can overcome both the problem of tracking and the problem of extendibil-
ity to consistency by restricting to classes which are definable with parameters.
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Iterating this through the constructible universe built over a given legitimate
candidate Vα0 one can make a case for the following axiom, which is more
appropriately called an extension principle: For all γ there exist α0 and α1

and an elementary embedding j : L(Vα0) → L(Vα1) where γ < α0 < α1. This
axiom is consistent (relative to mild large cardinal assumptions). So by over-
coming the problem of tracking in this way one also overcomes the problem of
extendibility to inconsistency. Furthermore, the resulting axiom implies that
X# exists for all X and so freezes Σ∼

1
3. This still leaves us with the problem

of defending the underlying conception. In Koellner (2003) I examined this
conception and concluded on a skeptical note. In any case, although such an
axiom might be intrinsically plausible on such an alternative conception, it
is hard to see how it could be intrinsically justified solely on the basis of the
iterative conception of set that we have been discussing.

There is another way in which one might try to justify strong principles resem-
bling reflection principles. Up until now we have concentrated on principles
which say that the height of the universe cannot be approximated from below.
One might consider related principles which articulate the idea that the width
of the universe cannot be approximated from within. On this approach to say
that the universe cannot be approximated from within is to say that there is no
“L-like model” which “approximates” or “covers” the universe. This general
principle—the principle of width reflection—would then be rendered precise in
terms of the various models occurring in inner model theory and their corre-
sponding covering properties. For example, at the first stage one would simply
take Gödel’s constructible universe L as the approximating universe and as
the notion of approximation one would take the notion involved in Jensen’s
original covering lemma, that is, to say that L covers V is to say that for
every uncountable set of ordinals X there is an Y ∈ L such that |Y | = |X|
and X ⊆ Y . The statement that L does not cover V implies, by the covering
lemma, that 0# exists. A second application of width reflection would then
lead to the existence of 0##. In this way we proceed through the “sharp hierar-
chy” (using the same covering property in each application of with reflection)
until we reach the Dodd-Jensen core model K. One more application of width
reflection yields an inner model with a measurable cardinal. From this stage
onward the covering property used in the applications of width reflection is
necessarily weaker, by a result of Prikry. A basic consequence of current in-
ner model theory (in particular, the core model induction) is that successive
applications of width reflection ultimately imply PD and ADL(R) and so defi-
nitely lead to a significant reduction in incompleteness. However, although the
principle of width reflection may be intrinsically plausible it is hard to defend
the idea that it is intrinsically justified on the basis of the iterative conception
of set.

There may be other ways of intrinsically justifying principles which lead to a
significant reduction in incompleteness. Gödel certainly believed that a more
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profound analysis of the concept of set (following the lines of Husserl’s phe-
nomenology) would lead to such principles. I am not optimistic but I do not
wish to make a stronger claim than that.

Let me close by discussing some applications of the above limitative results.
The first concerns inner model theory. In the approach discussed above one
approximates the hypothesis that “there exists a measurable cardinal” from
within via width reflection. One would like to approximate 0# from below
in a similar fashion and the most natural way to do this is through height
reflection. However, the results of this paper make this approach seem doubt-
ful since κ(ω) appears to be out of reach of reflection. The second concerns
intrinsic justifications. The inconsistency result shows that serious problems
can arise even when one is embarked on the project of unfolding the content
of a conception. It should give us pause in placing too much confidence in
the security of intrinsic justifications. Third, the consistency result shows that
intrinsic justifications, insofar as they are exhausted by the general reflection
principles discussed above, will not take us very far. Finally, these results can
be used to provide a rational reconstruction of Gödel’s early view to the effect
that V =L, PU, and CH are “absolutely undecidable”. The idea is that if one
has a conception of set theory which admits only intrinsic justifications and
if one thinks that these are exhausted by reflection principles then the above
results make a case for the claim that these statements really are “absolutely
undecidable”. 11 Fortunately, extrinsic justifications go a long way and I think
that one can make a strong extrinsic case for V 6= L and PU. 12 Whether CH
is “absolutely undecidable” is, of course, a more delicate question. 13
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Martin, D. A., 2005. Gödel’s conceptual realism. Bull. Symbolic Logic 11 (2),
207–224.

Martin, D. A., Steel, J. R., January 1989. A proof of projective determinacy.
Journal of the American Mathematical Society 2 (1), 71–125.

Parsons, C., 1995. Platonism and mathematical intuition in Kurt Gödel’s
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Tait, W. W., 2001. Gödel’s unpublished papers on foundations of mathematics.
Philosophia Mathematica 9, 87–126.

Tait, W. W., 2005a. Constructing cardinals from below. In: Tait (2005b).
Oxford University Press, pp. 133–154.

Tait, W. W., 2005b. The Provenance of Pure Reason: Essays in the Philosophy
of Mathematics and Its History. Oxford University Press.

Wang, H., 1977. Large sets. In: Butts, Hintikka (Eds.), Logic, Foundations of
Mathematics, and Computability Theory. D. Reidel Publishing Company,
Dordrecht-Holland, pp. 309–333.

Wang, H., 1996. A Logical Journey: From Gödel to Philosophy. MIT Press.
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