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Abstract. Ordinal analysis of theories is a core area of proof theory whose origins can be
traced back to Hilbert’s programme - the aim of which was to lay to rest all worries about
the foundations of mathematics once and for all by securing mathematics via an absolute
proof of consistency. Ordinal-theoretic proof theory came into existence in 1936, springing
forth from Gentzen’s head in the course of his consistency proof of arithmetic. The central
theme of ordinal analysis is the classification of theories by means of transfinite ordinals
that measure their ‘consistency strength’ and ‘computational power’. The so-called proof-
theoretic ordinal of a theory also serves to characterize its provably recursive functions
and can yield both conservation and combinatorial independence results.

This paper intends to survey the development of “ordinally informative” proof theory
from the work of Gentzen up to more recent advances in determining the proof-theoretic
ordinals of strong subsystems of second order arithmetic.
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1. Introduction

Ordinal analysis of theories is a core area of proof theory. The origins of proof the-
ory can be traced back to the second problem on Hilbert’s famous list of problems
(presented at the Second International Congress in Paris on August 8, 1900), which
called for a proof of consistency of the arithmetical axioms of the reals. Hilbert’s
work on axiomatic geometry marked the beginning of his live-long interest in the
axiomatic method. For geometry, he solved the problem of consistency by fur-
nishing arithmetical-analytical interpretations of the axioms, thereby reducing the
question of consistency to the consistency of the axioms for real numbers. The
consistency of the latter system of axioms is therefore the ultimate problem for the
foundations of mathematics.

Which axioms for real numbers Hilbert had in mind in his problem was made
precise only when he took up logic full scale in the 1920s and proposed a research
programme with the aim of providing mathematics with a secure foundation. This
was to be accomplished by first formalizing logic and mathematics in their entirety,
and then showing that these formalizations are consistent, that is to say free of
contradictions. Strong restrictions were placed on the methods to be applied in
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consistency proofs of axiom systems for mathematics: namely, these methods were
to be completely finitistic in character. The proposal to obtain finitistic consistency
proofs of axiom systems for mathematics came to be called Hilbert’s Programme.

Hilberts Programme is a reductive enterprise with the aim of showing that
whenever a real proposition can be proved by ideal means, it can also be proved
by real, finitistic means. However, Hilbert’s so-called formalism was not intended
to eliminate nonconstructive existence proofs in the practice of mathematics, but
to vindicate them.

In the 1920s, Ackermann and von Neumann, in pursuit of Hilberts Programme,
were working on consistency proofs for arithmetical systems. Ackermann’s 1924
dissertation gives a consistency proof for a second-order version of primitive re-
cursive arithmetic which explicitly uses a finitistic version of transfinite induction
up to the ordinal ωω

ω

. The employment of transfinite induction on ordinals in
consistency proofs came explicitly to the fore in Gentzen’s 1936 consistency proof
for Peano arithmetic, PA. This proof led to the assignment of a proof-theoretic
ordinal to a theory. This so-called ordinal analysis of theories allows one to classify
theories by means of transfinite ordinals that measure their ‘consistency strength’
and ‘computational power’.

The subject of this paper is the development of ordinal analysis from the work
of Gentzen up to very recent advances in determining the proof-theoretic ordinals
of strong subsystems of second order arithmetic.

1.1. Gentzen’s result. The most important structure in mathematics is ar-
guably the structure of the natural numbers N =

(
N; 0N, 1N,+N,×N, EN, <N

)
,

where 0N denotes zero, 1N denotes the number one, +N,×N, EN denote the suc-
cessor, addition, multiplication, and exponentiation function, respectively, and <N

stands for the less-than relation on the natural numbers. In particular, EN(n,m) =
nm.

Many of the famous theorems and problems of mathematics such as Fermat’s
and Goldbach’s conjecture, the Twin Prime conjecture, and Riemann’s hypothesis
can be formalized as sentences of the language of N and thus concern questions
about the structure N.

Definition 1.1. A theory designed with the intent of axiomatizing the structure N
is Peano arithmetic, PA. The language of PA has the predicate symbols =, <,
the function symbols +,×, E (for addition, multiplication,exponentiation) and the
constant symbols 0 and 1. The Axioms of PA comprise the usual equations and
laws for addition, multiplication, exponentiation, and the less-than relation. In
addition, PA has the Induction Scheme

(IND) ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x)

for all formulae ϕ of the language of PA.

Gentzen showed that transfinite induction up to the ordinal

ε0 = sup{ω, ωω, ωω
ω

, . . .} = least α. ωα = α
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suffices to prove the consistency of PA. To appreciate Gentzen’s result it is piv-
otal to note that he applied transfinite induction up to ε0 solely to elementary
computable predicates and besides that his proof used only finitistically justified
means. Hence, a more precise rendering of Gentzen’s result is

F + EC-TI(ε0) ` Con(PA), (1)

where F signifies a theory that embodies only finitistically acceptable means,
EC-TI(ε0) stands for transfinite induction up to ε0 for elementary computable
predicates, and Con(PA) expresses the consistency of PA. Gentzen also showed
that his result was the best possible in that PA proves transfinite induction up to
α for arithmetic predicates for any α < ε0. The compelling picture conjured up
by the above is that the non-finitist part of PA is encapsulated in EC-TI(ε0) and
therefore “measured” by ε0, thereby tempting one to adopt the following definition
of proof-theoretic ordinal of a theory T :

|T |Con = least α. F + EC-TI(α) ` Con(T ). (2)

In the above, many notions were left unexplained. We will now consider them one
by one. The elementary computable functions are exactly the Kalmar elementary
functions, i.e. the class of functions which contains the successor, projection,
zero, addition, multiplication, and modified subtraction functions and is closed
under composition and bounded sums and products. A predicate is elementary
computable if its characteristic function is elementary computable.

According to an influential analysis of finitism due to W.W. Tait, finististic
reasoning coincides with a system known as primitive recursive arithmetic. For
the purposes of ordinal analysis, however, it suffices to identify F with an even
more restricted theory known as Elementary Recursive Arithmetic, ERA. ERA
is a weak subsystem of PA having the same defining axioms for +,×, E,< but
with induction restricted to elementary computable predicates.

In order to formalize EC-TI(α) in the language of arithmetic we should first
discuss ordinals and the representation of particular ordinals α as relations on N.

Definition 1.2. A set A equipped with a total ordering ≺ (i.e. ≺ is transitive,
irreflexive, and ∀x, y ∈ A [x ≺ y ∨ x = y ∨ y ≺ x]) is a wellordering if every
non-empty subset X of A contains a ≺-least element, i.e. (∃u ∈ X)(∀y ∈ X)[u ≺
y ∨ u = y].

An ordinal is a transitive set wellordered by the elementhood relation ∈.

Fact 1.3. Every wellordering (A,≺) is order isomorphic to an ordinal (α,∈).

Ordinals are traditionally denoted by lower case Greek letters α, β, γ, δ, . . . and
the relation ∈ on ordinals is notated simply by <. The operations of addition,
multiplication, and exponentiation can be defined on all ordinals, however, addition
and multiplication are in general not commutative.

We are interested in representing specific ordinals α as relations on N. In essence
Cantor [10] defined the first ordinal representation system in 1897. Natural ordinal
representation systems are frequently derived from structures of the form

A = 〈α, f1, . . . , fn, <α〉 (3)
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where α is an ordinal, <α is the ordering of ordinals restricted to elements of α
and the fi are functions

fi : α× · · · × α︸ ︷︷ ︸
ki times

−→ α

for some natural number ki.

A = 〈A, g1, . . . , gn,≺〉 (4)

is a computable (or recursive) representation of A if the following conditions hold:

1. A ⊆ N and A is a computable set.

2. ≺ is a computable total ordering on A and the functions gi are computable.

3. A ∼= A, i.e. the two structures are isomorphic.

Theorem 1.4 (Cantor, 1897). For every ordinal β > 0 there exist unique ordinals
β0 ≥ β1 ≥ · · · ≥ βn such that

β = ωβ0 + . . .+ ωβn . (5)

The representation of β in (5) is called the Cantor normal form. We shall write
β =

CNF
ωβ1 + · · ·ωβn to convey that β0 ≥ β1 ≥ · · · ≥ βk.

ε0 denotes the least ordinal α > 0 such that (∀β < α)ωβ < α. ε0 can also be
described as the least ordinal α such that ωα = α.

Ordinals β < ε0 have a Cantor normal form with exponents βi < β and these
exponents have Cantor normal forms with yet again smaller exponents. As this
process must terminate, ordinals < ε0 can be coded by natural numbers. For
instance a coding function

p . q : ε0 −→ N
could be defined as follows:

pαq =
{

0 if α = 0
〈pα1q, . . . , pαnq〉 if α =

CNF
ωα1 + · · ·ωαn

where 〈k1, · · · , kn〉 := 2k1+1 · . . . · pkn+1
n with pi being the ith prime number (or

any other coding of tuples). Further define:

A0 := range of p.q pαq ≺ pβq :⇔ α < β

pαq +̂ pβq := pα+ βq pαq ·̂ pβq := pα · βq ω̂pαq := pωαq.

Then

〈ε0,+, ·, δ 7→ ωδ, <〉 ∼= 〈A0, +̂, ·̂, x 7→ ω̂x,≺〉.

A0, +̂, ·̂, x 7→ ω̂x,≺ are computable (recursive), in point of fact, they are all ele-
mentary computable.

Finally, we can spell out the scheme EC-TI(ε0) in the language of PA:

∀x [∀y (y ≺ x→ P (y)) → P (x)] → ∀xP (x)

for all elementary computable predicates P .
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1.2. Cut Elimination: Gentzen’s Hauptsatz. In the consistency
proof, Gentzen used his sequent calculus and employed the technique of cut elimi-
nation. As this is a tool of utmost importance in proof theory and ordinal analysis,
a rough outline of the underlying ideas will be discussed next.

The most common logical calculi are Hilbert-style systems. They are specified
by delineating a collection of schematic logical axioms and some inference rules.
The choice of axioms and rules is more or less arbitrary, only subject to the desire
to obtain a complete system (in the sense of Gödel’s completeness theorem). In
model theory it is usually enough to know that there is a complete calculus for
first order logic as this already entails the compactness theorem.

There are, however, proof calculi without this arbitrariness of axioms and rules.
The natural deduction calculus and the sequent calculus were both invented by
Gentzen. Both calculi are pretty illustrations of the symmetries of logic. The
sequent calculus is a central tool in ordinal analysis and allows for generalizations
to so-called infinitary logics. Gentzen’s main theorem about the sequent calculus
is the Hauptsatz, i.e. the cut elimination theorem.

A sequent is an expression Γ ⇒ ∆ where Γ and ∆ are finite sequences of
formulae A1, . . . , An and B1, . . . , Bm, respectively. We also allow for the possibility
that Γ or ∆ (or both) are empty. The empty sequence will be denoted by ∅. Σ ⇒ ∆
is read, informally, as Γ yields ∆ or, rather, the conjunction of the Ai yields the
disjunction of the Bj . In particular, we have:

• If Γ is empty, the sequent asserts the disjunction of the Bj .

• If ∆ is empty, it asserts the negation of the conjunction of the Ai.

• if Γ and ∆ are both empty, it asserts the impossible, i.e. a contradiction.

We use upper case Greek letters Γ,∆,Λ,Θ,Ξ . . . to range over finite sequences
of formulae. Γ ⊆ ∆ means that every formula of Γ is also a formula of ∆.

Next we list the axioms and rules of the sequent calculus.

• Identity Axiom
A ⇒ A

where A is any formula. In point of fact, one could limit this axiom to the
case of atomic formulae A.

• Cut Rule
Γ ⇒ ∆, A A,Λ ⇒ Θ

CutΓ,Λ ⇒ ∆,Θ
The formula A is called the cut formula of the inference.

• Structural Rules
Γ ⇒ ∆

Γ′ ⇒ ∆′
if Γ ⊆ Γ′, ∆ ⊆ ∆′.

A special case of the structural rule, known as contraction, occurs when the
lower sequent has fewer occurrences of a formula than the upper sequent.
For instance, A,Γ ⇒ ∆, B follows structurally from A,A,Γ ⇒ ∆, B,B.
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• Rules for Logical Operations

Left Right

Γ ⇒ ∆, A
¬A,Γ ⇒ ∆

B,Γ ⇒ ∆
Γ ⇒ ∆,¬B

Γ ⇒ ∆, A B,Λ ⇒ Θ
A→ B,Γ,Λ ⇒ ∆,Θ

A,Γ ⇒ ∆, B
Γ ⇒ ∆, A→ B

A,Γ ⇒ ∆
A ∧B,Γ ⇒ ∆

B,Γ ⇒ ∆
A ∧B,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B
Γ ⇒ ∆, A ∧B

A,Γ ⇒ ∆ B,Γ ⇒ ∆
A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, A
Γ ⇒ ∆, A ∨B

Γ ⇒ ∆, B
Γ ⇒ ∆, A ∨B

F (t),Γ ⇒ ∆
∀L∀xF (x),Γ ⇒ ∆

Γ ⇒ ∆, F (a)
∀R

Γ ⇒ ∆,∀xF (x)

F (a),Γ ⇒ ∆
∃L∃xF (x),Γ ⇒ ∆

Γ ⇒ ∆, F (t)
∃R

Γ ⇒ ∆,∃xF (x)

In ∀L and ∃R, t is an arbitrary term. The variable a in ∀R and ∃L is an eigen-
variable of the respective inference, i.e. a is not to occur in the lower sequent.

In the rules for logical operations, the formulae highlighted in the premisses
are called the minor formulae of that inference, while the formula highlighted in
the conclusion is the principal formula of that inference. The other formulae of an
inference are called side formulae.

A proof (aka deduction or derivation) D is a tree of sequents satisfying the
following conditions:

• The topmost sequents of D are identity axioms.

• Every sequent in D except the lowest one is an upper sequent of an inference
whose lower sequent is also in D.

A sequent Γ ⇒ ∆ is deducible if there is a proof having Γ ⇒ ∆ as its the bottom
sequent.

The Cut rule differs from the other rules in an important respect. With the
rules for introduction of a connective on the left or the right, one sees that every
formula that occurs above the line occurs below the line either directly, or as a
subformula of a formula below the line, and that is also true for the structural
rules. (Here A(t) is counted as a subformula, in a slightly extended sense, of both
∃xA(x) and ∀xA(x).) But in the case of the Cut rule, the cut formula A vanishes.
Gentzen showed that such “vanishing rules” can be eliminated.

Theorem 1.5 (Gentzen’s Hauptsatz). If a sequent Γ ⇒ ∆ is provable, then it is
provable without use of the Cut Rule (called a cut-free proof).
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The secret to Gentzen’s Hauptsatz is the symmetry of left and right rules
for the logical connectives. The proof of the cut elimination theorem is rather
intricate as the process of removing cuts interferes with the structural rules. The
possibility of contraction accounts for the high cost of eliminating cuts. Let |D| be
the height of the deduction D. Also, let rank(D) be supremum of the lengths of
cut formulae occurring in D. Turning D into a cut-free deduction of the same end
sequent results, in the worst case, in a deduction of height H(rank(D), |D|) where
H(0, n) = n and H(k + 1, n) = 4H(k,n), yielding hyper-exponential growth.

The Hauptsatz has an important corollary which explains its crucial role in
obtaining consistency proofs.

Corollary 1.6 (The Subformula Property). If a sequent Γ ⇒ ∆ is provable, then
it has a deduction all of whose formulae are subformulae of the formulae of Γ and
∆.

Corollary 1.7. A contradiction, i.e. the empty sequent ∅ ⇒ ∅, is not deducible.

Proof : According to the Hauptsatz, if the empty sequent were deducible it
would have a deduction without cuts. In a cut-free deduction of the empty sequent
only empty sequents can occur. But such a deduction does not exist. ut

While mathematics is based on logic, it cannot be developed solely on the basis
of pure logic. What is needed in addition are axioms that assert the existence of
mathematical objects and their properties. Logic plus axioms gives rise to (formal)
theories such as Peano arithmetic or the axioms of Zermelo-Fraenkel set theory.
What happens when we try to apply the procedure of cut elimination to theories?
Well, axioms are poisonous to this procedure. It breaks down because the symme-
try of the sequent calculus is lost. In general, we cannot remove cuts from deduc-
tions in a theory T when the cut formula is an axiom of T . However, sometimes
the axioms of a theory are of bounded syntactic complexity. Then the procedure
applies partially in that one can remove all cuts that exceed the complexity of the
axioms of T . This gives rise partial cut elimination. It is a very important tool
in proof theory. For example, it works very well if the axioms of a theory can be
presented as atomic intuitionistic sequents (also called Horn clauses), yielding the
completeness of Robinsons resolution method. Partial cut elimination also pays off
in the case of fragments of PA and set theory with restricted induction schemes,
be it induction on natural numbers or sets. This method can be used to extract
bounds from proofs of Π0

2 statements in such fragments.
Full arithmetic (i.e. PA), though, does not even allow for partial cut elimi-

nation since the induction axioms have unbounded complexity. However, one can
remove the obstacle to cut elimination in a drastic way by going infinite. The
so-called ω-rule consists of the two types of infinitary inferences:

Γ ⇒ ∆, F (0); Γ ⇒ ∆, F (1); . . . ; Γ ⇒ ∆, F (n); . . .
ωR

Γ ⇒ ∆,∀xF (x)

F (0),Γ ⇒ ∆; F (1),Γ ⇒ ∆; . . . ;F (n),Γ ⇒ ∆; . . .
ωL∃xF (x),Γ ⇒ ∆
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The price to pay will be that deductions become infinite objects, i.e. infinite
well-founded trees.

The sequent-style version of Peano arithmetic with the ω-rule will be termed
PAω. PAω has no use for free variables. Thus free variables are discarded and
all terms will be closed. All formulae of this system are therefore closed, too. The
numerals are the terms n̄, where 0̄ = 0 and n+ 1 = Sn̄. We shall identify n̄ with
the natural number n. All terms t of PAω evaluate to a numeral n̄.

PAω has all the inference rules of the sequent calculus except for ∀R and ∃L.
In their stead, PAω has the ωR and ωL inferences. The Axioms of PAω are the
following: (i) ∅ ⇒ A if A is a true atomic sentence; (ii) B ⇒ ∅ if B is a false
atomic sentence; (iii) F (s1, . . . , sn) ⇒ F (t1, . . . , tn) if F (s1, . . . , sn) is an atomic
sentence and si and ti evaluate to the same numeral.

With the aid of the ω-rule, each instance of the induction scheme becomes
logically deducible, albeit the price to pay will be that the proof tree becomes
infinite. To describe the cost of cut elimination for PAω, we introduce the measures
of height and cut rank of a PAω deduction D. We will notate this by

D α

k
Γ ⇒ ∆ .

The above relation is defined inductively following the buildup of the deduction
D. For the cut rank we need the definition of the length, |A| of a formula: |A| = 0
if A is atomic; |¬A0| = |A0|+ 1; |A02A1| = max(|A0, A1|) + 1 where 2 = ∧,∨,→;
|∃xF (x)| = |∀xF (x)| = |F (0)|+ 1.

Now suppose the last inference of D is of the form

D0

Γ0 ⇒ ∆0
. . .

Dn
Γn ⇒ ∆n

. . . n < τ

IΓ ⇒ ∆

where τ = 1, 2, ω and the Dn are the immediate subdeductions of D. If

Dn
αn

k
Γn ⇒ ∆n

and αn < α for all n < τ then

D α

k
Γ ⇒ ∆

providing that in the case of I being a cut with cut formula A we also have |A| <
k. We will write PAω

α

k
Γ ⇒ ∆ to convey that there exists a PAω-deduction

D α

k
Γ ⇒ ∆ . The ordinal analysis of PA proceeds by first unfolding any PA-

deduction into a PAω-deduction:

If PA ` Γ ⇒ ∆ then PAω
ω+m

k
Γ ⇒ ∆ (6)

for some m, k < ω. The next step is to get rid of the cuts. It turns out that the
cost of lowering the cut rank from k + 1 to k is an exponential with base ω.

Theorem 1.8 (Cut Elimination for PAω). If PAω
α

k+1
Γ ⇒ ∆, then

PAω
ωα

k
Γ ⇒ ∆.
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As a result, if PAω
α

n Γ ⇒ ∆ , we may apply the previous theorem n times

to arrive at a cut-free deduction PAω
ρ

0
Γ ⇒ ∆ with ρ = ωω

..
.ω
α

, where the
stack has height n. Combining this with the result from (6), it follows that every
sequent Γ ⇒ ∆ deducible in PA has a cut-free deduction in PAω of length < ε.
Ruminating on the details of how this result was achieved yields a consistency proof
for PA from transfinite induction up to ε0 for elementary decidable predicates on
the basis of finitistic reasoning (as described in (1).

Deductions in PAω being well-founded infinite trees, they have a natural associ-
ated ordinal length, namely: the height of the tree as an ordinal. Thus the passage
from finite deductions in PA to infinite cut-free deductions in PAω provides an
explanation of how the ordinal ε0 is connected with PA.

Gentzen, however, did not consider infinite proof trees. The infinitary version
of PA with the ω-rule was introduced by Schütte in [35]. Incidentally, the ω-rule
had already been proposed by Hilbert [18]. Gentzen worked with finite deductions
in the sequent calculus version of PA, devising an ingenious method of assigning
ordinals to purported derivations of the empty sequent (inconsistency). It turns
out in recent work by Buchholz [9] that in fact there is a much closer intrinsic
connection between the way Gentzen assigned ordinals to deductions in PA and
the way that ordinals are assigned to infinite deductions in PAω.

In the 1950s infinitary proof theory flourished in the hands of Schütte. He
extended his approach to PA to systems of ramified analysis and brought this
technique to perfection in his monograph “Beweistheorie” [36]. The ordinal rep-
resentation systems necessary for Schütte’s work will be reviewed in the next sub-
section.

1.3. A brief history of ordinal representation systems: 1904-
1950. Ordinals assigned as lengths to deductions to keep track of the cost of
operations such as cut elimination render ordinal analyses of theories particularly
transparent. In the case of PA, Gentzen could rely on Cantor’s normal form for a
supply of ordinal representations. For stronger theories, though, segments larger
than ε0 have to be employed. Ordinal representation systems utilized by proof
theorists in the 1960s arose in a purely set-theoretic context. This subsection
will present some of the underlying ideas as progress in ordinal-theoretic proof
theory also hinges on the development of sufficiently strong and transparent ordinal
representation systems.

In 1904, Hardy [17] wanted to “construct” a subset of R of size ℵ1. His method
was to represent countable ordinals via increasing sequence of natural numbers and
then to correlate a decimal expansion with each such sequence. Hardy used two
processes on sequences: (i) Removing the first element to represent the successor;
(ii) Diagonalizing at limits. E.g., if the sequence 1, 2, 3, . . . represents the ordinal
1, then 2, 3, 4, . . . represents the ordinal 2 and 3, 4, 5, . . . represents the ordinal 3
etc., while the ‘diagonal’ 1, 3, 5, . . . provides a representation of ω. In general,
if λ = limn∈N λn is a limit ordinal with bn1, bn2, bn3, . . . representing λn < λ,
then b11, b22, b33, . . . represents λ. This representation, however, depends on the
sequence chosen with limit λ. A sequence (λn)n∈N with λn < λ and limn∈N λn =
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λ is called a fundamental sequence for λ. Hardy’s two operations give explicit
representations for all ordinals < ω2.

Veblen [44] extended the initial segment of the countable for which fundamental
sequences can be given effectively. The new tools he devised were the operations
of derivation and transfinite iteration applied to continuous increasing functions
on ordinals.

Definition 1.9. Let ON be the class of ordinals. A (class) function f : ON → ON
is said to be increasing if α < β implies f(α) < f(β) and continuous (in the order
topology on ON) if

f(lim
ξ<λ

αξ) = lim
ξ<λ

f(αξ)

holds for every limit ordinal λ and increasing sequence (αξ)ξ<λ. f is called normal
if it is increasing and continuous.

The function β 7→ ω+β is normal while β 7→ β+ω is not continuous at ω since
limξ<ω(ξ + ω) = ω but (limξ<ω ξ) + ω = ω + ω.

Definition 1.10. The derivative f ′ of a function f : ON → ON is the function
which enumerates in increasing order the solutions of the equation f(α) = α, also
called the fixed points of f .

If f is a normal function, {α : f(α) = α} is a proper class and f ′ will be a
normal function, too.

Definition 1.11. Now, given a normal function f : ON → ON , define a hierarchy
of normal functions as follows:

f0 = f fα+1 = f ′α

fλ(ξ) = ξth element of
⋂
α<λ

(Range of fα) for λ a limit ordinal.

In this way, from the normal function f we get a two-place function, ϕf (α, β) :=
fα(β). Veblen then discusses the hierarchy when f = `, where `(α) = 1 + α.

The least ordinal γ > 0 closed under ϕ`, i.e. the least ordinal > 0 satisfying
(∀α, β < γ) ϕ`(α, β) < γ is the famous ordinal Γ0 which Feferman [13] and Schütte
[37, 38] determined to be the least ordinal ‘unreachable’ by predicative means.

Veblen extended this idea first to arbitrary finite numbers of arguments, but
then also to transfinite numbers of arguments, with the proviso that in, for example
Φf (α0, α1, . . . , αη), only a finite number of the arguments αν may be non-zero.
Finally, Veblen singled out the ordinal E(0), where E(0) is the least ordinal δ > 0
which cannot be named in terms of functions Φ`(α0, α1, . . . , αη) with η < δ, and
each αγ < δ.

Though the “great Veblen number” (as E(0) is sometimes called) is quite an
impressive ordinal it does not furnish an ordinal representation sufficient for the
task of analyzing a theory as strong as Π1

1 comprehension. Of course, it is possible
to go beyond E(0) and initiate a new hierarchy based on the function ξ 7→ E(ξ) or
even consider hierarchies utilizing finite type functionals over the ordinals. Still all
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these further steps amount to rather mundane progress over Veblen’s methods. In
1950 Bachmann [3] presented a new kind of operation on ordinals which dwarfs all
hierarchies obtained by iterating Veblen’s methods. Bachmann builds on Veblen’s
work but his novel idea was the systematic use of uncountable ordinals to keep
track of the functions defined by diagonalization. Let Ω be the first uncountable
ordinal. Bachmann defines a set of ordinals B closed under successor such that
with each limit λ ∈ B is associated an increasing sequence 〈λ[ξ] : ξ < τλ〉 of
ordinals λ[ξ] ∈ B of length τλ ≤ B and limξ<τλ λ[ξ] = λ. A hierarchy of functions
(ϕ

B

α)α∈B is then obtained as follows:

ϕ
B

0 (β) = 1 + β ϕ
B

α+1 =
(
ϕ

B

α

)′
(7)

ϕ
B

λ enumerates
⋂
ξ<τλ

(Range of ϕ
B

λ[ξ]) if λ is a limit with τλ < Ω

ϕ
B

λ enumerates {β < Ω : ϕ
B

λ[β](0) = β} if λ is a limit with τλ = Ω.

After the work of Bachmann, the story of ordinal representations becomes very
complicated. Significant papers (by Isles, Bridge, Pfeiffer, Schütte, Gerber to
mention a few) involve quite horrendous computations to keep track of the funda-
mental sequences. Also Bachmann’s approach was combined with uses of higher
type functionals by Aczel and Weyhrauch. Feferman proposed an entirely different
method for generating a Bachmann-type hierarchy of normal functions which does
not involve fundamental sequences. Buchholz further simplified the systems and
proved their recursivity. For details we recommend the preface to [7].

2. Ordinal analyses of systems of second order arith-
metic and set theory

Ordinal analysis is concerned with theories serving as frameworks for formalising
significant parts of mathematics. It is known that virtually all of ordinary mathe-
matics can be formalized in Zermelo-Fraenkel set theory with the axiom of choice,
ZFC. Hilbert and Bernays [19] showed that large chunks of mathematics can al-
ready be formalized in second order arithmetic. Owing to these observations, proof
theory has been focusing on set theories and subsystems of second order arithmetic.
Further scrutiny revealed that a small fragment is sufficient. Under the rubric of
Reverse Mathematics a research programme has been initiated by Harvey Fried-
man some thirty years ago. The idea is to ask whether, given a theorem, one
can prove its equivalence to some axiomatic system, with the aim of determining
what proof-theoretical resources are necessary for the theorems of mathematics.
More precisely, the objective of reverse mathematics is to investigate the role of
set existence axioms in ordinary mathematics. The main question can be stated
as follows:

Given a specific theorem τ of ordinary mathematics, which set existence
axioms are needed in order to prove τ?
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Central to the above is the reference to what is called ‘ordinary mathematics’.
This concept, of course, doesn’t have a precise definition. Roughly speaking, by
ordinary mathematics we mean main-stream, non-set-theoretic mathematics, i.e.
the core areas of mathematics which make no essential use of the concepts and
methods of set theory and do not essentially depend on the theory of uncountable
cardinal numbers.

2.1. Subsystems of second order arithmetic. The framework chosen for
studying set existence in reverse mathematics, though, is second order arithmetic
rather than set theory. Second order arithmetic, Z2, is a two-sorted formal system
with one sort of variables x, y, z, . . . ranging over natural numbers and the other
sort X,Y, Z, . . . ranging over sets of natural numbers. The language L2 of second-
order arithmetic also contains the symbols of PA, and in addition has a binary
relation symbol ∈ for elementhood. Formulae are built from the prime formulae
s = t, s < t, and s ∈ X (where s, t are numerical terms, i.e. terms of PA) by
closing off under the connectives ∧,∨,→,¬, numerical quantifiers ∀x, ∃x, and set
quantifiers ∀X,∃X.

The basic arithmetical axioms in all theories of second-order arithmetic are the
defining axioms for 0, 1,+,×, E,< (as for PA) and the induction axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X)→ ∀x(x ∈ X)).

We consider the axiom schema of C-comprehension for formula classes C which is
given by

C −CA ∃X∀u(u ∈ X ↔ F (u))

for all formulae F ∈ C in which X does not occur. Natural formula classes are the
arithmetical formulae, consisting of all formulae without second order quantifiers
∀X and ∃X, and the Π1

n-formulae, where a Π1
n-formula is a formula of the form

∀X1 . . . QXnA(X1, . . . , Xn) with ∀X1 . . . QXn being a string of n alternating set
quantifiers, commencing with a universal one, followed by an arithmetical formula
A(X1, . . . , Xn).

For each axiom scheme Ax we denote by (Ax)0 the theory consisting of the
basic arithmetical axioms plus the scheme Ax. By contrast, (Ax) stands for the
theory (Ax)0 augmented by the scheme of induction for all L2-formulae.

An example for these notations is the theory (Π1
1 −CA)0 which has the com-

prehension schema for Π1
1-formulae.

In PA one can define an elementary injective pairing function on numbers, e.g
(n,m) := 2n × 3m. With the help of this function an infinite sequence of sets of
natural numbers can be coded as a single set of natural numbers. The nth section
of set of natural numbers U is defined by Un := {m : (n,m) ∈ U}. Using this
coding, we can formulate the axiom of choice for formulae F in C by

C −AC ∀x∃Y F (x, Y )→ ∃Y ∀xF (x, Yx).

For many mathematical theorems τ , there is a weakest natural subsystem S(τ)
of Z2 such that S(τ) proves τ . Very often, if a theorem of ordinary mathematics
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is proved from the weakest possible set existence axioms, the statement of that
theorem will turn out to be provably equivalent to those axioms over a still weaker
base theory. This theme is referred to as Reverse Mathematics. Moreover, it
has turned out that S(τ) often belongs to a small list of specific subsystems of
Z2 dubbed RCA0, WKL0, ACA0, ATR0 and (Π1

1−CA)0, respectively. The
systems are enumerated in increasing strength. The main set existence axioms
of RCA0, WKL0, ACA0, ATR0, and (Π1

1−CA)0 are recursive comprehension,
weak König’s lemma, arithmetical comprehension, arithmetical transfinite recur-
sion, and Π1

1-comprehension, respectively. For exact definitions of all these sys-
tems and their role in reverse mathematics see [40]. The proof-theoretic strength
of RCA0 is weaker than that of PA while ACA0 has the same strength as PA.
Let |T | = |T |Con. To get a sense of scale, the strengths of the first four theories
are best expressed via their proof-theoretic ordinals: |RCA0| = |WKL0| = ωω,
|ACA0| = ε0, |ATR0| = Γ0. |(Π1

1−CA)0|, however, eludes expression in the or-
dinal representations introduced so far. Π1

1−CA involves a so-called impredicative
definition. An impredicative definition of an object refers to a presumed totality of
which the object being defined is itself to be a member. For example, to define a
set of natural numbers X as X = {n∈N : ∀Y ⊆ N F (n, Y )} is impredicative since
it involves the quantified variable ‘Y ’ ranging over arbitrary subsets of the natural
numbers N, of which the set X being defined is one member. Determining whether
∀Y ⊆ N F (n, Y )} holds involves an apparent circle since we shall have to know
in particular whether F (n,X) holds - but that cannot be settled until X itself is
determined. Impredicative set definitions permeate the fabric of Zermelo-Fraenkel
set theory in the guise of the separation and replacement axioms as well as the
powerset axiom.

A major breakthrough was made by Takeuti in 1967, who for the first time
obtained an ordinal analysis of an impredicative theory. In [41] he gave an ordinal
analysis of (Π1

1–CA), extended in 1973 to (Π1
1–AC) in [43] jointly with Yasugi. For

this Takeuti returned to Gentzen’s method of assigning ordinals (ordinal diagrams,
to be precise) to purported derivations of the empty sequent (inconsistency).

The next wave of results, which concerned theories of iterated inductive def-
initions, were obtained by Buchholz, Pohlers, and Sieg in the late 1970’s (see
[7]). Takeuti’s methods of reducing derivations of the empty sequent (“the in-
consistency”) were extremely difficult to follow, and therefore a more perspicuous
treatment was to be hoped for. Since the use of the infinitary ω-rule had greatly
facilitated the ordinal analysis of number theory, new infinitary rules were sought.
In 1977 (see [5]) Buchholz introduced such rules, dubbed Ω-rules to stress the
analogy. They led to a proof-theoretic treatment of a wide variety of systems, as
exemplified in the monograph [8] by Buchholz and Schütte. Yet simpler infinitary
rules were put forward a few years later by Pohlers, leading to the method of local
predicativity, which proved to be a very versatile tool (see [23]).

2.2. Set theories. With the work of Jäger and Pohlers (see [20, 21]) the forum
of ordinal analysis then switched from the realm of second-order arithmetic to
set theory, shaping what is now called admissible proof theory, after the models
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of Kripke-Platek set theory, KP. Their work culminated in the analysis of the
system Π1

1–AC plus an induction principle called Bar Induction BI which is a
scheme asserting that transfinite induction along well-founded relations holds for
arbitrary formulae (see [21]).

By and large, ordinal analyses for set theories are more uniform and transpar-
ent than for subsystems of Z2. The axiom systems for set theories considered in
this paper are formulated in the usual language of set theory (called L∈ hereafter)
containing ∈ as the only non-logical symbol besides =. Formulae are built from
prime formulae a ∈ b and a = b by use of propositional connectives and quantifiers
∀x, ∃x. Quantifiers of the forms ∀x ∈ a, ∃x ∈ a are called bounded. Bounded or
∆0-formulae are the formulae wherein all quantifiers are bounded; Σ1-formulae are
those of the form ∃xϕ(x) where ϕ(a) is a ∆0-formula. For n > 0, Πn-formulae
(Σn-formulae) are the formulae with a prefix of n alternating unbounded quan-
tifiers starting with a universal (existential) one followed by a ∆0-formula. The
class of Σ-formulae is the smallest class of formulae containing the ∆0-formulae
which is closed under ∧, ∨, bounded quantification and unbounded existential
quantification.

One of the set theories which is amenable to ordinal analysis is Kripke-Platek
set theory, KP. Its standard models are called admissible sets. One of the reasons
that this is an important theory is that a great deal of set theory requires only the
axioms of KP. An even more important reason is that admissible sets have been a
major source of interaction between model theory, recursion theory and set theory
(cf. [4]). KP arises from ZF by completely omitting the power set axiom and
restricting separation and collection to bounded formulae. These alterations are
suggested by the informal notion of ‘predicative’. To be more precise, the axioms
of KP consist of Extensionality, Pair, Union, Infinity, Bounded Separation

∃x∀u [u ∈ x↔ (u ∈ a ∧ F (u))]

for all bounded formulae F (u), Bounded Collection

∀x ∈ a ∃y G(x, y) → ∃z ∀x ∈ a ∃y ∈ z G(x, y)

for all bounded formulae G(x, y), and Set Induction

∀x [(∀y ∈ xH(y))→ H(x)] ,→ ∀xH(x)

for all formulae H(x).
A transitive set A such that (A,∈) is a model of KP is called an admissible

set. Of particular interest are the models of KP formed by segments of Gödel’s
constructible hierarchy L. The constructible hierarchy is obtained by iterating the
definable powerset operation through the ordinals

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 =
{
X : X ⊆ Lβ ; X definable over 〈Lβ ,∈〉

}
.
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So any element of L of level α is definable from elements of L with levels < α and
the parameter Lα. An ordinal α is admissible if the structure (Lα,∈) is a model
of KP.

Formulae of L2 can be easily translated into the language of set theory. Some
of the subtheories of Z2 considered above have set-theoretic counterparts, charac-
terized by extensions of KP. KPi is an extension of KP via the axiom

(Lim) ∀x∃y[x∈y ∧ y is an admissible set].

KPl denotes the system KPi without Bounded Collection. It turns out that
(Π1

1−AC) + BI proves the same L2-formulae as KPi, while (Π1
1−CA) proves the

same L2-formulae as KPl.

2.3. Sketches of an ordinal analysis of KP. Serving as a miniature example
of an ordinal analysis of an impredicative system, the ordinal analysis of KP
(see [20, 6]) we will sketched in broad strokes. Bachmann’s system can be recast
without fundamental sequences as follows: Let Ω be a “big” ordinal, e.g. Ω = ℵ1.
By recursion on α we define sets CΩ(α, β) and the ordinal ψΩ(α) as follows:

CΩ(α, β) =


closure of β ∪ {0,Ω}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψΩ(ξ))ξ<α

(8)

ψΩ(α) ' min{ρ < Ω : CΩ(α, ρ) ∩ Ω = ρ }. (9)

It can be shown that ψΩ(α) is always defined and that ψΩ(α) < Ω. Moreover,
[ψΩ(α),Ω) ∩ CΩ(α,ψΩ(α)) = ∅; thus the order-type of the ordinals below Ω
which belong to the set CΩ(α,ψΩ(α)) is ψΩ(α). ψΩ(α) is also a countable ordinal.
In more pictorial terms, ψΩ(α) is the αth collapse of Ω.

Let εΩ+1 be the least ordinal α > Ω such that ωα = α. The set of ordinals
CΩ(εΩ+1, 0) gives rise to an elementary computable ordinal representation system.
In what follows, CΩ(εΩ+1, 0) will be abbreviated to T (Ω).

In the case of PA the addition of an infinitary rule restored the possibility of
cut elimination. In order to obtain a similar result for set theories like KP, one has
to work a bit harder. A peculiarity of PA is that every object n of the intended
model has a canonical name in the language, namely, the nth numeral. It is not
clear, though, how to bestow a canonical name to each element of the set–theoretic
universe. This is where Gödel’s constructible universe L comes in handy. As L is
“made” from the ordinals it is pretty obvious how to “name” sets in L once one has
names for ordinals. These will be taken from T (Ω). Henceforth, we shall restrict
ourselves to ordinals from T (Ω). The set terms and their ordinal levels are defined
inductively. First, for each α ∈ T (Ω) ∩ Ω, there will be a set term Lα. Its ordinal
level is declared to be α. If F (a,~b) is a set-theoretic formula (whose free variables
are among the indicated) and ~s ≡ s1, · · · , sn are set terms with levels < α, then
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the formal expression {x∈Lα : F (x,~s)Lα} is a set term of level α. Here F (x,~s)Lα

results from F (x,~s) by restricting all unbounded quantifiers to Lα.
The collection of set terms will serve as a formal universe for a theory KP∞

with infinitary rules. The infinitary rule for the universal quantifier on the right
takes the form: From Γ ⇒ ∆, F (t) for all RSΩ–terms t conclude Γ ⇒ ∆,∀x F (x).
There are also rules for bounded universal quantifiers: From Γ ⇒ ∆, F (t) for all
RSΩ–terms t with levels< α conclude Γ ⇒ ∆, (∀x ∈ Lα) F (x). The corresponding
rule for introducing a universal quantifier bounded by a term of the form {x∈Lα :
F (x,~s)Lα} is slightly more complicated. With the help of these infinitary rules it
now possible to give logical deductions of all axioms of KP with the exception of
Bounded Collection. The latter can be deduced from the rule of Σ-Reflection: From
Γ ⇒ ∆, C conclude Γ ⇒ ∆,∃z Cz for every Σ-formula C. The class of Σ-formulae
is the smallest class of formulae containing the bounded formulae which is closed
under ∧, ∨, bounded quantification and unbounded existential quantification. Cz

is obtained from C by replacing all unbounded quantifiers ∃x in C by ∃x ∈ z.
The length and cut ranks of KP∞-deductions will be measured by ordinals

from T (Ω). If
KP ` F (u1, . . . , ur)

then KP∞
Ω·m
Ω+n

B(s1, . . . , sr) holds for some m,n and all set terms s1, . . . , sr; m
and n depend only on the KP-derivation of B(~u).

The usual cut elimination procedure works unless the cut formulae have been
introduced by Σ-reflection rules. The obstacle to pushing cut elimination further
is exemplified by the following scenario:

δ

Ω
Γ ⇒ ∆, C

ξ

Ω
Γ ⇒ ∆,∃z Cz

(Σ–Ref)
· · · ξs

Ω
Ξ, Cs ⇒ Λ · · · (|s |< Ω)
ξ

Ω
Ξ,∃z Cz ⇒ Λ

(∃L)

α

Ω+1
Γ,Ξ ⇒ ∆,Λ

(Cut)

In general, it won’t be possible to remove such an instance of the Cut Rule. How-
ever, if the complexity of the side formulae is just right, the cut can be removed by
a technique called collapsing of deductions. This method applies when the formu-
lae in Γ and Ξ are Π-formulae and the formulae in ∆ and Λ are Σ-formulae. The
class of Π-formulae is the smallest class of formulae containing the bounded formu-
lae which is closed under ∧, ∨, bounded quantification and unbounded universal
quantification.

For the technique of collapsing one needs the function α 7→ ψΩ(α) and, more-
over, it is necessary to ensure that the infinite deductions are of a very uniform
character. The details are rather finicky and took several years to work out. The
upshot is that every Σ sentence C deducible in KP has a cut-free deduction in
KP∞ of length ψΩ(εΩ+1), which entails that LψΩ(εΩ+1) |= C. Moreover, the proof-
theoretic ordinal of KP is ψΩ(εΩ+1), also known as the Bachmann-Howard ordinal.

2.4. Admissible proof theory. KP is the weakest in a line of theories that
were analyzed by proof theorists of the Munich school in the late 1970s and 1980s.
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In many respects, KP is a very special case. Several fascinating aspects of ordinal
analysis do not yet exhibit themselves at the level of KP.

Recall that KPl is the set-theoretic version of (Π1
1−AC)+BI, while KPi is the

set-theoretic counterpart to (Π1
1−AC) + BI . The main axiom of KPl says that

every set is contained in an admissible set (one also says that the admissible sets
are cofinal in the universe) without requiring that the universe is also admissible,
too. To get a sense of scale for comparing KP, KPl, and KPi it is perhaps best
to relate the large cardinal assumptions that give rise to the pertaining ordinal
representation systems. In the case of KPl the assumptions is that there are
infinitely many large ordinals Ω1,Ω2,Ω3, . . . (where Ωn can be taken to be ℵn)
each equipped with their own ‘collapsing’ function α 7→ ψΩn(α). The ordinal
system sufficient for KPi is built using the much bolder assumption that there is
an inaccessible cardinal I.

As the above set theories are based on the notion of admissible set it is suitable
to call the proof theory concerned with them ‘admissible proof theory’. The salient
feature of admissible sets is that they are models of Bounded Collection and that
that principle is equivalent to Σ Reflection on the basis of the other axioms of KP
(see [4]). Furthermore, admissible sets of the form Lκ also satisfy Π2 reflection,
i.e., if Lκ |= ∀x∃y C(x, y,~a) with C(x, y) bounded and ~a ∈ Lκ, then there exists
ρ < κ such that ~a ∈ Lρ and Lρ |= ∀x∃y C(x, y,~a).

In essence, admissible proof theory is a gathering of cut-elimination and col-
lapsing techniques that can handle infinitary calculi of set theory with Σ and/or
Π2 reflection rules, and thus lends itself to ordinal analyses of theories of the form
KP+ “there are x many admissibles” or KP+ “there are many admissibles”.

A theory on the verge of admissible proof theory is KPM, designed to ax-
iomatize essential features of a recursively Mahlo universe of sets. An admissible
ordinal κ is said to be recursively Mahlo if it satisfies Π2-reflection in the above
sense but with the extra condition that the reflecting set Lρ be admissible as well.
The ordinal representation [25] for KPM is built on the assumption that there
exists a Mahlo cardinal. The novel feature of over previous work is that there are
two layers of collapsing functions. The ordinal analysis for KPM was carried out
in [26]. A different approach to KPM using ordinal diagrams is due to Arai [1].

The means of admissible proof theory are too weak to deal with the next level
of reflection having three alternations of quantifiers, i.e. Π3-reflection.

2.5. Rewards of ordinal analysis Results that have been achieved through
ordinal analysis mainly fall into four groups: (1) Consistency of subsystems of
classical second order arithmetic and set theory relative to constructive theories,
(2) reductions of theories formulated as conservation theorems, (3) combinatorial
independence results, and (4) classifications of provable functions and ordinals. A
detailed account if these results has been given in [31], section 3. An example where
ordinal representation systems led to a new combinatorial result was Friedman’s
extension of Kruskal’s Theorem, EKT, which asserts that finite trees are well-
quasi-ordered under gap embeddability (see [39]). The gap condition imposed on
the embeddings is directly related to an ordinal notation system that was used for
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the analysis of Π1
1 comprehension. The principle EKT played a crucial role in the

proof of the graph minor theorem of Robertson and Seymour (see [16]).

Theorem 2.1. (Robertson, Seymour) For any infinite sequence G0, G1, G2, . . . of
finite graphs there exist i < j so that Gi is isomorphic to a minor of Gj.

3. Beyond admissible proof theory

Gentzen fostered hopes that with sufficiently large constructive ordinals one could
establish the consistency of analysis, i.e., Z2. The purpose of this section is to
report on the next major step in analyzing fragments of Z2. This is obviously
the ordinal analysis of the system (Π1

2–CA).1 The strength of (Π1
2–CA) dwarfs

that of (Π1
1–AC). The treatment of Π1

2 comprehension posed formidable technical
challenges (see [30, 32, 33]. Other approaches to ordinal analysis of systems above
Π1

1–AC are due to Arai (see [1, 2]) who uses ordinal diagrams and finite deductions,
and Carlson [11] who employs patterns of resemblance.

In the following, we will gradually slice Π1
2 comprehension into degrees of re-

flection to achieve a sense of scale. There is no way to describe this comprehension
simply in terms of admissibility except that on the set–theoretic side, Π1

2 compre-
hension corresponds to Σ1 separation, i.e. the scheme of axioms

∃z(z = {x∈a : φ(x)})

for all Σ1 formulas φ. The precise relationship is as follows:

Theorem 3.1. KP+Σ1 separation and (Π1
2−CA)+BI prove the same sentences

of second order arithmetic.

The ordinals κ such that Lκ |= KP + Σ1-Separation are familiar from ordinal
recursion theory.

Definition 3.2. An admissible ordinal κ is said to be nonprojectible if there is no
total κ–recursive function mapping κ one–one into some β < κ, where a function
g : Lκ → Lκ is called κ–recursive if it is Σ definable in Lκ.

The key to the ‘largeness’ properties of nonprojectible ordinals is that for any
nonprojectible ordinal κ, Lκ is a limit of Σ1–elementary substructures, i.e. for
every β < κ there exists a β < ρ < κ such that Lρ is a Σ1–elementary substructure
of Lκ, written Lρ ≺1 Lκ.

Such ordinals satisfying Lρ ≺1 Lκ have strong reflecting properties. For in-
stance, if Lρ |= C for some set–theoretic sentence C (containing parameters from
Lρ), then there exists a γ < ρ such that Lγ |= C. This is because Lρ |= C implies
Lκ |= ∃γ CLγ , hence Lρ |= ∃γ CLγ using Lρ ≺1 Lκ.

The last result makes it clear that an ordinal analysis of Π1
2 comprehension

would necessarily involve a proof–theoretic treatment of reflections beyond those
surfacing in admissible proof theory. The notion of stability will be instrumental.

1For more background information see [42],p.259, [15],p.362, [24],p.374.
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Definition 3.3. α is δ–stable if Lα ≺1 Lα+δ.

For our purposes we need refinements of this notion, the simplest being provided
by:

Definition 3.4. α > 0 is said to be Πn–reflecting if Lα |= Πn–reflection. By
Πn–reflection we mean the scheme C → ∃z[Tran(z)∧ z 6= ∅∧Cz], where C is Πn,
and Tran(z) expresses that z is a transitive set.

Πn–reflection for all n suffices to express one step in the ≺1 relation.

Lemma 3.5 (cf. [34], 1.18). Lκ ≺1 Lκ+1 iff κ is Πn–reflecting for all n.

The step of analyzing Kripke-Platek set theory augmented by Πn-reflection
rules was taken in [29]; the ordinal representation system for Π3-reflection employed
a weakly compact cardinal.

A further refinement of the notion of δ-stability will be addressed next.

Definition 3.6. κ is said to be δ-Πn-reflecting if whenever C(u, ~x) is a set–
theoretic Πn formula, a1, . . . , ar∈Lκ and Lκ+δ |= C[κ, a1, . . . , an], then there exists
κ0, δ0 < κ such that a1, . . . , ar∈Lκ0 and Lκ0+δ0 |= C[κ0, a1, . . . , an].

Putting the previous definition to work, one gets:

Corollary 3.7. If κ is δ + 1-Σ1-reflecting, then, for all n, κ is δ-Σn-reflecting.

At this point let us return to proof theory to explain the need for even further
refinements of the preceding notions. Recall that the first nonprojectible ordinal ρ
is a limit of smaller ordinals ρn such that Lρn ≺1 Lρ. In the ordinal representation
system for Π1

2 −CA, there will be symbols En and Eω for ρn and ρ, respectively.
The associated infinitary proof system will have rules

(RefΣ(LEn+δ))
Γ ⇒ ∆, C(~s)LEn+δ

Γ ⇒ ∆, (∃z∈LEn)(∃~x∈LEn)[Tran(z) ∧ C(~x)z]
,

where C(~x) is a Σ formula, ~s are set terms of levels < En + δ, and δ < Eω.
These rules suffice to bring about the embedding KP + Σ1-Separation into the
infinitary proof system, but reflection rules galore will be needed to carry out cut-
elimination. For example, there will be “many” ordinals π, δ ∈ OR that play the
role of δ-Πn+1-reflecting ordinals by virtue of corresponding reflection rules in the
infinitary calculus.

4. A large cardinal notion

An important part of ordinal analysis is the development of ordinal representation
systems. Extensive ordinal representation systems are difficult to understand from
a purely syntactical point of view, often to such an extent that it makes no sense
to present an ordinal representation system without giving some kind of semantic
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interpretation. Large cardinals have been used quite frequently in the definition
procedure of strong ordinal representation systems, and large cardinal notions have
been an important source of inspiration. In the end, they can be dispensed with,
but they add an intriguing twist to the relation between set theory and proof
theory. The advantage of working in a strong set–theoretic context is that we can
build models without getting buried under complexity considerations.

Such systems are usually generated from collapsing functions. However, from
now on we prefer to call them projection functions since they will no longer bear any
resemblance to Mostowski’s collapsing function. In [33], the projection functions
needed for the ordinal analysis of Π1

2 have been construed as inverses to certain
partial elementary embeddings. In this final section we shall indicate a model
for the projection functions, employing rather sweeping large cardinal axioms, in
that we shall presume the existence of certain cardinals, featuring a strong form
of indescribability, dubbed shrewdness.

To be able to eliminate reflections of the type described in Definition 3.6 requires
projection functions which can project intervals [κ, κ + δ] of ordinals down below
κ.

Definition 4.1. Let V =
⋃

α∈ON
Vα be the cumulative hierarchy of sets, i.e.

V0 = ∅, Vα+1 = {X : X ⊆ Vα}, Vλ =
⋃
ξ<λ

Vξ for limit ordinals λ.

Let η > 0. A cardinal κ is η-shrewd if for all P ⊆ Vκ and every set-theoretic
formula F (v0, v1), whenever

Vκ+η |= F [P, κ],

then there exist 0 < κ0, η0 < κ such that

Vκ0+η0 |= F [P ∩ Vκ0 , κ0].

κ is shrewd if κ is η-shrewd for every η > 0.

Let F be a collection of formulae. A cardinal κ is η-F-shrewd if for all P ⊆ Vκ
and every F-formula H(v0, v1), whenever

Vκ+η |= H[P, κ],

then there exist 0 < κ0, η0 < κ such that

Vκ0+η0 |= H[P ∩ Vκ0 , κ0].

We will also consider a notion of shrewdness with regard to a given class.
Let U be a fresh unary predicate symbol. Given a language L let L(U) denote

its extension by U. IfA is a class we denote by 〈Vα;A〉 the structure 〈Vα;∈;A∩Vα〉.
For an Lset(U)-sentence φ, let the meaning of “〈Vα;A〉 |= φ” be determined by

interpreting U(t) as t ∈ A ∩ Vα.
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Definition 4.2. Assume that A is a class. Let η > 0. A cardinal κ is A-η-shrewd
if for all P ⊆ Vκ and every formula F (v0, v1) of Lset(U), whenever

〈Vκ+η;A〉 |= F [P, κ],

then there exist 0 < κ0, η0 < κ such that

〈Vκ0+η0 ;A〉 |= F [P ∩ Vκ0 , κ0].

κ is A-shrewd if κ is A-η-shrewd for every η > 0.

Likewise, for F a collection of formulae in a language L(U), we say that a cardinal
κ is A-η-F-shrewd if for all P ⊆ Vκ and every F-formula H(v0, v1), whenever

〈Vκ+η;A〉 |= H[P, κ],

then there exist 0 < κ0, η0 < κ such that

〈Vκ0+η0 ;A〉 |= H[P ∩ Vκ0 , κ0].

Corollary 4.3. If κ is A-δ-shrewd and 0 < η < δ, then κ is A-η-shrewd.

There are similarities between the notions of η-shrewdness and η-indescribability
(see [12], Ch.9, §4). However, it should be noted that if κ is η-indescribable and
ρ < η, it does not necessarily follow that κ is also ρ-indescribable (see [12], 9.4.6).

A reason for calling the above cardinals shrewd is that if there is a shrewd
cardinal κ in the universe, then, loosely speaking, for any notion of large cardinal
N which does not make reference to the totality of all ordinals, if there exists
an N -cardinal then the least such cardinal is below κ. So for instance, if there
are measurable and shrewd cardinals in the universe, then the least measurable is
smaller than the least shrewd cardinal.

To situate the notion of shrewdness with regard to consistency strength in the
usual hierarchy of large cardinals, we recall the notion of a subtle cardinal.

Definition 4.4. A cardinal κ is said to be subtle if for any sequence 〈Sα : α < κ〉
such that Sα ⊆ α and C closed and unbounded in κ, there are β < δ both in C
satisfying

Sδ ∩ β = Sβ .

Since subtle cardinals are not covered in many of the standard texts dealing
with large cardinals, we mention the following facts (see [22], §20):

Remark 4.5. Let κ(ω) denote the first ω-Erdös cardinal.

(i) {π < κ(ω) : π is subtle} is stationary in κ(ω).

(ii) ‘Subtlety’ relativises to L, i.e. if π is subtle, then L |= “π is subtle”.

Lemma 4.6. Assume that π is a subtle cardinal and that A ⊆ Vπ. Then for every
B ⊆ π closed and unbounded in π there exists κ ∈ B such that

〈Vπ;A〉 |= “κ is A-shrewd ”.

Corollary 4.7. Assume that π is a subtle cardinal. Then there exists a cardinal
κ < π such that κ is η-shrewd for all η < π.
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