Fruitful and helpful ordinal functions
Harold Simmons

School of Mathematics
The University, Manchester, England

hsimmons @ manchester.ac.uk

Abstract

In [7] T described a method of producing ordinal notations ‘from below’ (for
countable ordinals up to the Howard ordinal) and compared that method with
the current popular ‘from above’ method which uses a collapsing function from
uncountable ordinals. This ‘from below’ method employs a slight generalization of
the normal function — the fruitful functions — and what seems to be a new class
of functions — the helpful functions — which exist at all levels of the function space
hierarchy over ordinals. Unfortunately I was rather sparing in my description of
these classes of functions. In this paper I am much more generous. I describe
the properties of the helpful functions on all finite levels and, in the final section,
indicate how they can be used to simplify the generation of ordinal notations.

The main aim of this paper is to fill in the details missing from [7]. The secondary
aim is to indicate what can be done with helpful functions. Fuller details of this
development will appear elsewhere.

Contents

S T W N =

Preamble
Background materialo Lo Lo
Low level functions
Helpful functions e
The higher level fixed point extractors
Ascending the ordinals

References

1 Preamble

In [7] I compared two methods of generating notations for countable ordinals: the standard

method using a collapsing function; and a less standard but historically older method.
In the review [5] of [7] the reviewer quite rightly criticized me for omitting certain

proofs from [7]. The paper doesn’t even contain the definition of a crucial central notion.

This paper corrects that omission, and with [7] forms a self contained account.
Let me outline what this paper and [7] are about.

Let © be the least uncountable ordinal. We wish to name as many ordinals o < €) as

possible. Let

QO =0% =€

be the next critical ordinal beyond 2. An ordinal v is critical if v = w".

In [7] T described the standard method of generating notations as ‘from above’. By
that I merely meant that larger ordinals, up to QF, are used to index the generation of
smaller ordinals, well below 2. The collapsing function

¥ :0,Q7) ——[0,9Q)

sends larger ordinals to smaller ordinals.

I described the alternative method of generating notations as ‘from below’. By that
I merely meant that ordinals already generated are used to index the next phase of
generation. As each phase peters out some new gadget has to be conjured up to keep
the process going. It was Veblen in [9] who first used this method to generate ordinal
notations, but the idea goes right back to Archimedes in [1] who used this method to
generate notations for natural numbers.

The new gadgets I employed are certain fixed point extractors, and to produce these I
used what I called helpful functions. It is an account of helpful functions that is missing
from [7]. This paper fills that gap.

The main results of this paper are contained in Sections 3, 4, and 5. Let me give a
brief description of that material.

Let Ord be the set of countable ordinals. Thus Ord = [0,£2). From now on in this
paper ‘ordinal’ means ‘countable ordinal’, a member of Ord. Let

Ord’ = (Ord — Ord)

be the set of all ordinal functions. The notion of a normal function f : Ord’ is a central
component of any method of generating ordinal notations. Essentially we have to harvest
the fixed points of such a function f. For what we do here it turns out that the class of
normal functions is slightly too small. Thus we use the slightly larger class Fruit C Ord’
of fruitful functions. These functions f € Fruit are fruitful because they provide many
fixed points, all of which are critical. The class Fruit is defined and discussed in the first
part of Section 3.

In general, one fruitful (or normal) function is not enough. To generate a decent
stretch of ordinals we need several fruitful functions. The class Help € Ord’ of helpful
functions makes it easier to grow the required fruitful functions. Each helpful function
h € Help can be iterated

a — hC

through Ord (for any given input ¢) and this is a fruitful function. This format makes
the arithmetic of the fruitful functions easier to handle. The class Help is defined and
discussed in the latter part of Section 3.

This method of generating ordinals ‘from below’” depends on producing enough mem-
bers of Help. To do that we use certain higher order functions. These are also called
helpful because the defining properties of the whole family have a certain uniformity.
This larger family is described in Section 4, and a particular family of such functions is
described in Section 5.

Section 2 gathers together all the bits and pieces that we need. Some of this is a repeat
of Section 2 of [7].

Finally, in Section 6, I give a brief historical account of the various phases in the
development of ordinal notations. I indicate how each phase can be seen in terms of
helpful functions, each phase using such functions at higher and higher levels. This

2

final section is merely an indication of what can be done with helpful functions. A full
development will appear elsewhere.

To conclude this preamble I indicate where the proofs missing from [7] can be found
in this paper.

Result from [7] is proved here as:

26 (a) 2.4 and 4.4

26 (b) 4.1(Help1)

26 () 3.13(b) and 4.6(b)
2.7 (1) 3.13(c)

207 (>1) 46(c)

2.9 3.10(b) and 4.6
2.13 5.10

Acknowledgment

I thank the referee for his very careful reading of several versions of this paper. He made
several important observations and spotted a gap in the proof of a crucial result.

2 Background material

Let Ord be the set of countable ordinals. Except for a brief mention towards the end of
the paper, all the ordinals we meet belong to Ord. Thus it is safe to let ‘ordinal’ mean
‘countable ordinal’. We use various ordinal functions

f:Ord — Ord

as well as higher level versions of such functions. To handle these we set up a bit of
notation.

For an arbitrary set S let
S"=(S—Y9)

the set of functions on S. This construction (+)" can be iterated.
2.1 DEFINITION. The chain Ord" of spaces is generated by
Ord® = Ord Ord™+Y = Qrd™”
for each r < w. |

Thus Ord©® is just the space Ord of ordinals, and Ord"™ is the space Ord’ of ordinal
functions, and so on. It seems that members of Ord“*? are rarely used, but we will meet
several in this paper. Notice that this space Ord*? can be decomposed as

0rd™? — Ord™Y — 0rd® — ... = Ord’ — Ord — Ord

(where punctuating brackets should be inserted in the obvious way). In particular, each
function G : Ord"*? must receive successive inputs

g: Ord™Y, q Oord®, ..., g1 :0Ord’, ¢ : Ord

3

to produce
Gg : 0rd"™V, Ggg, : 0rdY, ..., Ggg,--- g1 : Ord’

and then return its eventual output Ggg; - -- g1¢ € Ord.

The space Ord is linearly ordered and carries an actual supremum operation \/ which
converts each countable subset X C Ord into its least upper bound \/ X. There is a
formal way to lift this operation to higher levels.

The following definition could be given in a more compact form, but it is safer to
format it as a kind of recursion.

2.2 DEFINITION. (base) For each non-empty, countable subset G C Ord’ the function

\/ G : Ord’ is given by
(Va)c=Visclgear
(for ¢ € Ord). We call this function \/ G the pointwise supremum of G.

(raise) For each [< w and each non-empty, countable subset G € Qrd*? the function
VG: Ord"*? is given by
(V9)s=\1{cglGegy
(for g € Ord"*Y). We call this function \/ G the pointwise supremum of G. |

To explain what is going on let us temporarily write \/(l) for the gadget constructed
on Ord®. Thus \/(0) is the actual supremum operation on Ord, and then we generate
\/(1), \/(2), e \/(l), ... in turn by recursion on I. Later we work with a subclass H® C
Ord® which can be partially ordered with \/(l) as a supremum operation.

For G C Ord"*? the construction of \/“*”g can be unravelled as

(v(l+2)g)ggl g = \/{Gggz 1| G € G

using the actual supremum operation on Ord.
Ordinal iterations of function g € Qrd’ are standard fare. The pointwise supremum
enables us to lift this to higher levels.

2.3 DEFINITION. (a) For each | < w and each g : Ord™V the ordinal iterates ¢* of ¢
are generated by

P =id ¢ =gog® ¢ =\/{g"la<\}

for each a € Ord and limit ordinal A € Qrd. (Here id is the identity function on Qrd".)
(b) For each | < w a class S € Qrd“™V is smooth if fog € S for each f,g € S, and
\/ G € S for each non-empty and countable G C S. []

Again, for the moment, treat this as nothing more than a definition. In general the
ordinal iterates of ¢ (as defined here) may not behave as you think they should. The
notion of a smooth class is a way of calming down some of the wilder behaviour.

2.4 LEMMA. Suppose S C Ord"™Y is smooth and g € S. Then ¢* € S for each non-zero
ordinal o.

We will construct several smooth classes, most at higher levels. However, for the first
examples we stick with Ord’.

3 Low level functions

In this section we look at standard ordinal functions of type Ord’. We isolate two classes
of such functions. The class of fruitful functions Fruit C Qrd’ forms a rather mild expan-
sion of the usual class of a normal function. This class Fruit is more amenable and, in
particular, it is smooth. The class Help C Ord’ of helpful functions on this level is also
smooth. It is the interaction between Fruit and Help that interests us here.

Thus there are three main classes of ordinal functions that we meet: general functions,
fruitful functions, and helpful functions. Usually we write

f for a fruitful function ¢ for a general function A for a helpful function

to indicate which kind of function is being used. This is a convenient informal convention
which, of course, may be broken at times. Fruitful functions are so called because they
have lots of fixed points each of which is critical. The helpful functions enable us to
produce fruitful functions, and hence generate critical ordinals.

(Actually, this convention came about because for a long time I couldn’t remember
the difference between fruitful and helpful — which I was then calling something else. 1
had to invent this little trick to keep my sanity. I'm not sure it worked.)

To begin the analysis we first isolate a smooth class IM C Ord which includes both
Fruit and Help.

We are interested in various combinations of standard property of functions g : Ord’.
Most of these have names.

3.1 DEFINITION. A function g : Ord’ is, respectively

(¢) inflationary if a<ga

(si) strictly inflationary if o < ga

(m) monotone it a<p=ga<gp

(sm) strictly monotone if «a < (= ga < gf

(b) big if w® < ga (except possibly for a = 0)
(sb) strictly big if ga is critical

(¢c) continuous it g(VA) =V gl4]

for all ordinals «, 3, and each non-empty countable set A of ordinals.
Let IM be the class of functions which are both inflationary and monotone. []

Recall that an ordinal v is critical if v = w”. These are sometimes rather quaintly
referred to as e-numbers. The five properties (i, si,m, sm,c) are standard. The two
properties (b, sb) are not often named, but often used as a technical convenience. It
doesn’t take long to see that the three implications

si=1i sm=i+m i+sb=1>

hold. If g is continuous then
gr=\/{gala < \}

for each limit ordinal A. In general this is not enough to ensure continuity, but it is
for monotone functions. Luckily we are concerned almost entirely with the class IM of
functions.

In the next few paragraphs we obtain a few properties of IM and its members. Some
of these properties hold for larger classes of ordinal functions, but we don’t need those
generalizations here.

As with any class of monotone functions the class IM can be partially ordered using
the pointwise comparison.

f<g<= (VYa € Ord)[fa < ga]

With this comparison, for each non-empty countable subset G C IM the pointwise supre-
mum \/ G is the actual supremum.

3.2 LEMMA. The class IM is smooth. Furthermore
f<a= ¢’ <g"
for each g € IM and ordinals o, 3.

Proof. The first part is easy, and the second part follows by induction on o (making
use of the inflationary property of g). |

By intention each smooth class is closed under (non-zero) ordinal iterates. When
g € IM the family {g* | o € Ord} of iterates is an ascending chain

d=¢"<g=g¢g'<g’<--<g*<--- (ae0rd)
which helps with certain calculations. For instance, we have the following.

3.3 LEMMA. If g € IM then

g og’ =gt (¢F)* = g7

for all o, 8 € Ord.

Proof. Both of these are proved by induction on «. Let’s look at the leap to a limit
ordinal A for the second identity. Thus we require

(99)°¢ = g7%¢
for each ¢ € Ord. We have
9=\ ¢la <A =\{g"Cla<A} " =\{g¢l7v <8 x A}
where the second equality uses the induction hypothesis. Also
ﬁx)\:\/{ﬂxa\a<)\}
(by construction of ordinal multiplication). The comparison

(¢7)*¢ < g7 ¢

is immediate (since § x o < 3 for « < \). For the converse consider any v < (3. There is
some o < A with v < 3, and then Lemma 3.2 gives

9'¢ < g™ ¢ < (99)¢

which leads to the required result. [|

We have made a bit of a meal of this proof to highlight the required properties of g.
As a consequence of this result some limit iterates of functions in IM are constant for
long periods, and so can not be strictly monotone.

3.4 EXAMPLE. Let g € IM and suppose A is additively critical. For each ordinal ¢ and
ordinal v < A we have

(970 = (9" 0 g®)C = g*N(=g’

and hence ¢* is constant between ¢ and g*C.
When g is continuous the situation is even more dramatic. Suppose g is continuous

and observe that each ordinal iterate g® is continuous, In particular, ¢* is continuous.
Thus

7% =00 = ¢* (VHo™¢la <) = Vg (9°0) Ja < ¢ = o¢
and then for each r < w we obtain
g)\~(r+1)<= — g\

by a simple induction on 7. Thus ¢* = ¢*“, and this indicates that there can be even
longer constant stretches. |

Finally, we need a couple of simple properties of TM.

3.5 LEMMA. For all function f,g € IM we have
9<g9® [f<g=f"<g°

for each ordinal o for the right hand implication.

Proof. Consider any ordinal ¢ € Ord. We have

¢ <9¢
since ¢ is inflationary, and then
9¢ < g(9¢) = g%¢

since g is monotone.
Suppose f < g where f, g € IM. We show

f =g

by induction on a.

The base case, a = 0, is immediate.
For the induction step, a — a + 1, we have

[t =fof*< fog*<gog*=g*"!

where the first comparison holds by the induction hypothesis and since f is monotone,
and the second comparison holds since f < g.
For a limit ordinal A we have

A=Vt la< 2 <" la <At =g

to complete the induction. |

We can now isolate the fruitful and the helpful functions.
Recall that an ordinal function f € QOrd’ is normal if it is strictly monotone and
continuous. We modify this notion slightly.

3.6 DEFINITION. An ordinal function f € Qrd’ is fruitful if it is inflationary, monotone,
big, and continuous. Let Fruit be the class of fruitful functions.

An ordinal function g € Qrd’ is big normal if it is strictly monotone, big, and continu-
ous.

An ordinal function h € Ord’ is helpful if it is strictly inflationary, monotone, and
strictly big. Let Help be the class of helpful functions. |

Of course, these big normal functions are just the usual normal functions that are big.
These are the only normal functions we need here so we often omit the modifier ‘big’.

It turns out that strict monotonicity is rather too restrictive, so we use the larger class
Fruit of fruitful functions. Each such function g belongs to IM, and Example 3.4 shows
that not all the iterates are normal. We rectify that by releasing our grip on normality
and becoming fruity.

A proof of the following is straight forward.

3.7 LEMMA. Each of the classes Fruit and Help is smooth.

Why are the classes Fruit and Help useful? To answer that we introduce a particular
second level function.

3.8 DEFINITION. Let Fiz : Ord” be the function given by
FizfC= [“(C+1)
for each function f : Ord’ and ordinal (. |

We have
Fizf¢=\/{f((+1)|r<w}

and this makes sense for any function f : Ord’. However, we use Fiz only on f € Fruit.
For such f we see that Fix is a fixed point extractor.

3.9 LEMMA. For each f € Fruit and (€ Ord, the value Fix f(is the least ordinal v
such that (< v = fv. Furthermore, this value v is critical.

8

Proof. For the given f € Fruit and ordinal (, let v = Faix f(. Let

Clr] = f(¢+1)

for r < w, so that
(<o)< < < -

since f is inflationary and monotone, with

v =\ | r < w)

by unravelling the definition of Fix. Since f is continuous this gives

fr=\[{fCrIr <wy=\/{Cr+1]|r <w}=v

to show that v is a fixed point of f.
Let 1 be any fixed point of f with (< u. Then ¢[0] < p and hence since f is monotone
a simple induction gives

(rl < fu=p
for each r < w. Thus v < p.
Finally, since f is big we have

(<rv<w < fr=v

to show that v is critical. [|

Much of the standard material on ordinal notations is about extracting fixed points,
so we can see why Fix might be useful.
Fruitful and helpful functions work hand in hand.

3.10 LEMMA. (a) For each [€ Fruit the function Fizf is helpful.
(b) For each h € Help and ordinal ¢, the ordinal function o — h®(is normal.

Proof. (a) For fruitful f let h = Fizf. For ¢ € Ord let v = h(. By Lemma 3.9, we
have (< v = fr with a certain minimality on v. In particular, & is strictly inflationary.

Consider any ¢ < n and let g = hn. Then (<7 < pu = fu and hence v < p by the
minimality of v. This shows that A is monotone.

Since v # 0, we have w” < fv = v, so that v is critical, and hence h is strictly big.

(b) For the given helpful function ~ and ordinal ¢ let

fa=h"¢

for each a € Ord.
By construction for each ordinal o we have

fla+1) = h(fa) > fa

since h is strictly inflationary. Also by construction we have

fr=\{fala<)}

9

for each limit ordinal A\. But if & < A then @ < o+ 1 < A so that fa < f(a+1) < fA
which is enough to show that f is strictly monotone.

A simple argument now shows that f is continuous.

For non-zero « the value fa is either a value of h or a supremum of such values. Thus
faois critical. But o < fa and hence w® < w/® = fa to show that f is big. |

By part (b) of this result, for each helpful function h and ordinal ¢ the function
a — h%C is fruitful (in fact, normal) and provides an enumeration of a set of critical
ordinals. This will be useful if only we can find some helpful functions. That is where
part (a) comes into play.

The smallest fruitful function is w®, exponentiation to base w.

3.11 DEFINITION. Let Next = Fiz(w*). u

By Lemma 3.10(a) the function Next is helpful. Let h be any helpful function, and let
f = w*. Foreach ¢ € Ord we have (+1 < h¢ and h(is critical, so that f(¢+1) < w" = h(.
An easy induction gives f"(¢ + 1) < h(for all r < w, and hence Next(< h(, to show
the following

3.12 LEMMA. The function Next is the smallest helpful function.

A simple argument shows that Next (is the next critical ordinal strictly beyond (.
In particular
¢, = Next®ey = Next'™w = Next'T0

is a long list of critical ordinals.

Suppose we try to use this iteration to generate notations from below. Once we have
generated a critical ordinal €, then the Cantor normal form gives us a notation for all
ordinals (< €,41. However, the rule is that before we can use €, we must have generated
earlier a notation for ao. Thus this process will run out of steam at

€c

€.,

the least ordinal v with ¢, = v.

To generate larger critical ordinals we need more powerful helpful functions. We show
how to produce these in the next section. To conclude this section we obtain a couple of
properties of an arbitrary helpful function.

3.13 LEMMA. Suppose h € Help and let A be an (additively) critical ordinal. Then for
all ordinals o, v, with { < X, the three conditions

(a) ¢+ a < he(.

(b) h*¢ = h0

(¢c) ((<v=h"0)<= (0 <v=~hC(
hold.

10

Proof. (a) We prove this by induction on «a.
The base case, a = 0, is trivial.
For the induction step, a +— « + 1, since h is strictly inflationary we have

Rt = h(h*O) > h*C+1>C+a+1

using the induction hypothesis.
For the induction leap to a limit ordinal A we have

WC=\/{nCla <A} 2 \{¢+ala<a) =+ \{ala <A} =¢+A

as required.

(b) The iterate h* is helpful, and hence monotone, so that h*¢ > h*0. For the converse
we have ¢ < h¢0 (by part (a)) and hence h*¢ < h*(h¢0) = h¢t*0 by Lemma 3.3. But
¢ < Aand A is (additively) critical so that { + A = A, to give the required result.

(c) As a preliminary we observe that for each pair v, { of ordinals with v # 0, the
ordinal

p="h"¢
is critical. If ¥ = a4 1 then
= h(h*¢)
so that pu is critical since it is a value of the helpful function h. If v is a limit ordinal,

then p is a supremum of values of h, and so is again critical.
As a particular case, if ¥ > 0 and either of

v=h0 v=h"(

then v is critical. Furthermore, if the right hand equality holds then { < . Two uses of
(b) now gives the equivalence. |

A standard development of ordinal notations would make much use of normal func-
tions. We will see that fruitful functions are a more amenable way of doing this. The
helpful functions provide a canonical way of generating such functions. However, a more
important benefit of the notion of helpfulness is that it lifts to higher levels.

4 Helpful functions
By Section 3 we know that for each helpful function h € Help the fruitful function

a — hiTeQ

generates a sequence of critical ordinals. (The ‘14’ can be avoided here if we are prepared
to start from a known critical ordinal.) Furthermore, for each fruitful function f € Fruit,
the function Fix f is helpful, and

o+ (Fizf)*0
enumerates the fixed points of f.

11

In this section we describe a method of producing helpful functions which doesn’t
require a given fruitful function. The technique makes use of functions g : Ord*V on all
levels.

Recall that by decomposing the space

Ord™*? = Ord™Y — Ord¥ — ... - Ord’ — Ord — Ord
we see that each function H : Ord™*? must receive successive inputs
h:Ord™Y py - 0rd®, ..., hy - Ord’, ¢ : Ord

to return its eventual output Hhh; - - - h1(. Often these central inputs Ay, ..., h; play only
a passive role, so we abbreviate the list h;---hy to h and write Hhh(for the eventual
output. We do not use this abbreviation in the following definition, but we will in the
subsequent analysis.

4.1 DEFINITION. (Base) Let H(Y) = Help, the class of helpful functions on level 1.
(Step) For each | < w a function H : Qrd™? is helpful on level I + 2 if

(Helpl) Hh is helpful on level [+ 1
(Help2) h2hy---hy < Hhhy - o
(Help3) Hhhy---hof < Hhhy -+ hag

for all h: HUHD, by - HO, .. hy - HD, and f,¢: HY with f < g.
Let H*2 be the class of helpful functions on level I + 2. [|

This is a construction by recursion on the level I to produce H*) C Qrd™Y. The
comparison in (Help2, Help3) takes place in Ord’. Since the functions involved are in TM,
this doesn’t lead to difficulties. Notice that the first two defining clauses of H+?) can be
written

(Helpl) Hh e HUHY (Help2) h*h < Hhh

using the abbreviation h explained above. The third clause is not so straight forward.
In particular, for the case [= 0 you should read (Help3) with some care, because the
sequence h, hy, ..., hy is empty. A function H : Ord” is in H® precisely when

(1) HheHY (2) W*<Hh (3) Hf <Hyg
for all f,g,h: HV with f < g.
The squaring property (Help2) is quite powerful, especially when used at higher levels.
This will be a crucial component of the proof of several results.
42 LEMMA. For each H € H*?2 h e HD p e HO, ... hy € HY we have
(hh)* < Hhh

(where h abbreviates hy -+ - hy).

12

Proof. We proceed by induction on the level [. For the base case, [= 0, the parameter
sequence h is empty, and the required comparison h? < Hh is just (Help2). For the
induction step, [— [+ 1, consider a helpful K : Ord"*®, as well as the helpful H, h, h.
By (Helpl) we know that Hh is helpful. Thus, using (Help2) for K and the induction
hypothesis, we have

KHhh > H*hh = H(Hh)h > (Hhh)?

as required. [|
This result gives us another squaring property.
4.3 LEMMA. Consider any list
hipr € HUPY e HO,) by € HWY

of helpful functions on the indicated levels. Then for each 1 < m < [the pointwise
comparison

hfnhm_l coohy < hgihy ooy
holds.

Proof. Since h,,41 is helpful we have
hznhmfr“m < Myt b - ha
by (Help2). This is the required result if m = [. Otherwise Lemma 3.5 gives
Ponsihm - By < (hypg1 B - - h1)?
and then Lemma 4.2 gives
B2 B—1 - hi < Byl i1 hon - o

since h,,1o is helpful. Repeating this argument eventually gives the required result. W

In Lemma 3.7 we saw that the class H") = Help is smooth. We now generalize this.

4.4 LEMMA. For each l < w, the class HU*Y s smooth.

Proof. Lemma 3.7 gives the result for H®Y. We look at H¢+? for arbitrary [< w.

We show first that H(+?) is closed under composition. To this end consider any
G, H € H*?. To show G o H € H*?) we look at (Helpl, Help2, Help3) in turn.

For each h € H*Y we have Hh € H!*Y and hence G(HhR) € H*Y to verify (Helpl).

To verify (Help2) consider any compatible family &, h of helpful functions. Then

(G o H)hh = G(Hh)h > (Hhh)? > Hhh > h?h

as required. Here the first comparison follows by Lemma 4.2, the second follows since
Hhh is inflationary, and the third uses (Help2) for H.
To verify (Help3) observe that

(G o H)hhy - hof = G(HMW - -hof (G o H)hhy - hag = G(HR)hy - - - hag

13

so the known monotone property of G gives the required result. (Strictly speaking, this
is the argument for [# 0. A slight variant is needed for [= 0.)

To show that H(*+? is closed under pointwise suprema, consider a non-empty subset
H of HU+2). We show that \/ H is helpful. We look at (Helpl, Help2, Help3) in turn.
For each h € H!*Y we have

(\/ H)h = \/{Hh|H € H}

so the known closure property of HU*Y gives the required property of H(*2) . (Strictly
speaking, this is a proof by induction on [.) This verifies (Helpl).

To verify (Help2) consider any compatible family h, h of helpful functions. Since H is
non-empty we have

(\/ H)hh > Hhh > h*h

for any selected any member H of H.
Property (Help3) follows in the same way. [

For each [< w the class H*?) is smooth, and hence is closed under ordinal iteration.
This has a useful consequence.

45 COROLLARY. For each | < w, H € H*? h € H®Y we have H*h € HHY for each
a € Ord.

Lemmas 3.10(b) and 3.13 give us some crucial properties of helpful functions h € H®,
These properties lift to higher levels.

46 LEMMA. Let H : HH2 p - HEHYD by -HO, .. hy : HY. Then the function
o — HYhh(
1s normal, and
(a) H*hho < H*" hh0
(b) H*hh¢ = H hh0
(¢) (¢ <v=H"hh0) < (0 < v = H"hh()

hold for all ordinals o, v,(and (additively) critical ordinal X\ with (< A\. Here h abbre-
viates hy -+ - hy.

Proof. Let f be this function, that is
fa=H*hh(

for each o € Ord.
The function hh is helpful, hence strictly inflationary, so that

Hhh(¢ > (hh)2C = hh(hh() > hh(

14

by Lemma 4.2. In particular
fla+1)=H(H*h)h({ > H*hh(= fa

(using H*h in place of h).
For each limit ordinal A and ordinal @ < A\, we have

at+l<A

and so (by the definition of fA) we have fa < f(a+ 1) < f\ using the previous observa-
tion.

This shows that f is strictly monotone.

By construction the function f is continuous.

Finally, for each « the function H*hh is helpful, and so takes only critical values. But
a < fa, so that w® < w/® = fa, as required to show that f is normal.

(a) Using Lemma 4.2 we have
H*'hh0 = H(H*h)h0 > (H*hh)*0 = H*hh(H*hh0) > H*hha

where last comparison holds since each helpful function is inflationary.

(b) The comparison H*hh¢ > H*hhO is immediate.
For the converse consider any ordinal @ with { < av < A. Then, using part (a) we have

HYhh(< H®hha < H*"'hh0 < H*hhO

where the last comparison holds by the construction of H*. Thus taking the supremum
over all o < A\ gives the required result.

(c) For the given H, h, h let
w= H"hh(

for any pair v, (of ordinals with v # 0. By Corollary 4.5 we see that p is a value of a
member of H"), and hence is critical. Note also that ¢ < p, so that two uses of part (b)
gives

w= H"hhn

for each n < v. Further uses of part (b) give the two required implications. [

That’s enough of the generalities. What we need now are some useful examples of
helpful functions on each level.

5 The higher level fixed point extractors

Lemma 3.10(a) gives us Fizf € H" for each f € Fruit. The aim of this section is to
exhibit an important member [1] of H(*?) for each level . Naturally, we begin with the
definition.

5.1 DEFINITION. For each level [let [1] : @rd"? be the function given by
[t]hh = Fixf where fa = h*h0 (for a € Ord)

for each compatible family A, h of (helpful) functions. |

15

It is important to understand what these functions do, so let’s take a look at [o].

Consider any helpful function h : Qrd’. By Lemma 3.10(b) we have a normal and
therefore fruitful function f : Ord’ given by fa = h®0 (for a € Ord). By Lemmas 3.9 and
3.13(c), we have

[0]h¢ = (the least v with (< v = h”O) = (the least v with 0 < v = h”C)
for each ¢ € Ord, and v = h¥0 is critical.
5.2 LEMMA. The operator
[0] : Ord®
is helpful, that is [o] € H®,

Proof. We must show that
(Helpl) [o]h € Help (Help2) h? < [o]h (Help3) [o]f <[o]g

for all f, g, h € Help with f < g.

(Helpl) Consider any h € Help. Using both parts of Lemma 3.10 we see first that the
function
a — h*0
is normal, and hence
[0]h = Fixz(a — h0)
is helpful.
(Help2) Consider any ordinal ¢ and let

v = [0]h¢ = B0 = h*(

be the value at (. As above, we know that v is critical, and so 2 < v. The function
o — h®(is monotone, and hence

R < h'C=v

to give the required result.
(Help3) Consider helpful functions f < g. Consider any ¢ € Ord, and let

so that u < v is the required conclusion. By the characteristic property of [o] given above
we have

¢<u=f"0 (<r=yg4"0

where both p and v are the least solution of that requirement.
By Lemma 3.10(b) the function oo —— f0 is inflationary (in fact, normal), and we
have

fm<yg”
by Lemma 3.5. Thus

and hence p < v by the minimality of u.]

In this section we generalize this argument to show that each function [1] is helpful on
the appropriate level. This will take a little longer, and the proof will, in part, subsume
the argument above.

We use the characteristic property of [i] which generalizes that of [0] given above.

By Lemma 3.9 and either Lemma 3.13(c) for [= 0 or Lemma 4.6(c) for [> 0 we
obtain the following.

5.3 LEMMA. For each level | and helpful functions
heHEY peHOY, ... hy € HY
we have
[1]hh(= (the least v with ¢ < v = h"h0) = (the least v with 0 < v = h”h()
for each ordinal ¢ € Ord.

As before, here h abbreviates the list Ay, ..., h; of central inputs. We continue with
this, with a couple of variations, and move with caution when [= 0.
We look at the three required properties (Helpl, Help2, Help3) in reverse order.

5.4 LEMMA. For each level | the operator
[1] : Qrd+?
has (Help3).

Proof. The case [= 0 is dealt with in the proof of Lemma 5.2. Thus here we may
assume [> 0.
Consider helpful functions

he HWY b eHY, ..., hy e H® and f,¢g € HY
with f < g. We are concerned with the functions
[e]hby---hof [t]hhy - hog

which we abbreviate as

[1]hhf [1]hhg

and move with the usual care. Observe that since [> 0 we have here a slight variation
on our usual convention. The list h is empty when [= 1.
Consider any ¢ € Ord, and let

p=[i]hhfC v =[1]hhg(

so that p < v is the required conclusion.
By the characteristic property of [¢]| given above we have

¢ <pu=h"hfo (<v=h"hgO

17

where both p and v are the least solution of that requirement.
By Lemma 4.4 the class H*V is smooth, so we have

h e HHY

and hence
h'h € H®?

by a sequences of uses of (Helpl). This gives
hhf < h’hg

by (Help3) at level 2.
By the first part of Lemma 4.6 the function

a— h*hf0

is inflationary (in fact, normal). Thus
¢ <v < h"hf0 < h"hg0
so that both
¢<pu<h'hf0 (<v < h’hf0
hold. The minimality of u gives pu < v, as required. |
Next we look at (Help2).

5.5 LEMMA. For each level | the operator

[1] : Ord*+?
has (Help2).

Proof. By Lemma 5.2 we know that this holds for [= 0. Thus we may suppose that
[>0.

Consider helpful functions
he HEY b eHY, ... b e HY

and an ordinal (€ Ord. We require

h2h¢ < [1]hhC
where h is the usual abbreviation.
Let
v =[1]hh(
so that
(<v=h"R0 =h"h(
by Lemma 5.3.

18

By the first part of Lemma 4.6 the function f given by
fa=h*h(

is normal, and v is a fixed point of the function. In particular, 2 < v. Since f is monotone
we have

h*h¢ < h'h(=v
for the required result. |

Verifying that [i] has (Helpl) will take a little longer.
We need another consequence of the squaring property of (Help2).

5.6 LEMMA. For each level | and helpful functions
he HEY b eHY, ... by e HY

we have
h2 hy_1---h1 < [i1]hh

for each 1 < m <.

Proof. Here
h abbreviates h;---hg

in the usual way.
Consider any 1 < m < [. We have

h2 hp_1---hy < hh;---hy = hh

by Lemma 4.3.
Consider any ¢ € Ord. By Lemma 5.3 the value
v =[1]hh(
satisfies
0 <v=h"h(

and is infinite (in fact critical). By Lemma 3.10 or the first part of Lemma 4.6 the function
a — h®h(
is monotone (in fact normal). Thus
h2 By -+ ¢ < hh(< BYh(= v

to give the required result.]

How do we show that
[1] : Ord*+?

has (Help1)? We must show that
[1]h is helpful

for all h : Qrd"*V.
To do that we must show

19

(I-1) hhy is helpful
(I-2) [t]h has (Help2)

(I-3) [t]h has (Help3)

for all h € HU*YD by € HO. Of these (12) is the case m = [of Lemma 5.6, and (I3) holds
by Lemma 5.4. Thus is suffices to show (I-1).
To do that we must show

(I = 1)-1) hhyhy_4 is helpful
((I = 1)-2) [t]hh; has (Help2)
((I =1)-3) [t]hhy has (Help3)
for all h € H+Y by € HY hy_y € HUY. Of these (I—12) is the case m = [— 1 of Lemma

5.6, and (I3) holds by Lemma 5.4. Thus is suffices to show ((I — 1)-1).
This indicates that to show that [:] has (Helpl) we must verify a list

(-1) (I—1)-1) ... (1-1)
of conditions. We do this by a restricted induction from 1 to [.
Here is the base case.

5.7 LEMMA. For an arbitrary list
heHY peHOY, ..., hy € HY
of helpful functions on the indicated levels, the function
[1]hhy - - - hy - Qrd™W
1s helpful.
Proof. With the usual abbreviation consider the function f : Qrd™" given by
fa=h*h0

for each ordinal a. By Lemma 3.10(b) for [= 0 or the first part of Lemma 4.6 for [> 0,

this function f is normal. Thus
[i]hh = Fiz f

is helpful by Lemma 3.10(a). [

We build on this to obtain the following.
5.8 LEMMA. Consider the fized point extractor
[1] : Qrd+?
for an arbitrary level I. Consider also helpful functions
heHY peHOY, ..., hy € HY

on the indicated levels.
For each 1 < m < the function

[1]hhy - - - By = Qrd™
is helpful, that is a member of H™.

20

Proof. We prove this by a restricted induction on m (from 1 to) with allowable
variations of the helpful functions h, hy, ..., h;.

The base case, m = 1, is just Lemma 5.7.

Consider the induction step, m — m + 1, where m < [. To show that

[thigahe - hina
is helpful we require the following three conditions.
(1) [t]hsahy - hupyr by, s helpful
(2) K2 hm1 - h < [1)higihy e Bpgihon -y
(3) [t]his1hy - Byt B - - - By is ‘monotone’

for all helpful functions hA,,, ..., h; on the appropriate levels.
Requirement (1) is the induction hypothesis.
Requirement (2) is is just Lemma 5.6.
Requirement (3) is a consequence of Lemma 5.4. |

The preamble to Lemma 5.7 show that we have the following.
5.9 COROLLARY. For each level | the operator
[1] : Ord*+?
has (Help1).
Finally, Corollary 5.9 and Lemmas 5.5 and 5.4 give the required result.
5.10 THEOREM. For each level | the function
[1] : Ord+?
is helpful, that is a member of HU+2)

This fills the gaps of [7].

There is another possible development of this material.

The first observation is that a helpful function on some level is applied only to a
helpful input at the next level down (where each ordinal is viewed as helpful). We may
set H® = Ord. In fact, we are not interested in the behaviour of a helpful function
outside the helpful inputs. The next observation is that a helpful function applied to a
helpful input returns a helpful output. This is the condition (Helpl). Thus we could
define a

H"*Y = those functions of type HY ——— H®

which satisfy certain restriction. At the same time we can partially order each class H®.
Since H(® = Ord we have the linear comparison on H(®, and since HY C IM we have
the pointwise comparison on H®M. This idea lifts all the way up the levels. Thus for
H, K € H®? we use

H < K < (Yh e HY)[Hh < KB

21

to produce a pointwise comparison on H*? . With this we find that
h? < Hh H is monotone

are rephrasings of (Help2) and (Help3). Furthermore, the pointwise supremum on H®
is the actual supremum. As a consequence of this we obtain higher level analogues of
Lemma 3.3. Thus

H®o HP = HP™ (HO)> = {gP*e

holds for each H € H!*? and ordinals «, (3.
The problem with this approach is that it requires the definitions and properties to
be developed in parallel, which can be a bit messy. Thus I chose to present it as above.

6 Ascending the ordinals

In this final section I will indicate how the use of helpful functions relates to other methods
of generating ordinal notations. Of course, [7] is concerned with the relationship with the
modern method, but the earlier methods also fit into the same picture. I will indicate
how this can be done without giving all the details. More information will be given in [8].

It is convenient to take an historical perspective. This enables us to produce a sequence

A[0], A[1], A[2], AJ3], . ..

of larger and larger ordinals the first few of which are milestones along the journey.
God created the natural numbers

0,1,2,...
but, by design or oversight, forgot to tell us the limit point
Al =w

of this sequence. This is the zeroth ordinal in our A-sequence. It was left to Cantor to
discover w and peer beyond. (Some people have tried to convince me that Cantor invented
w, not just discover it.)

It is fair to say that the Cantor normal form to base w gives the first system of ordinal
notations. This uses w*®, exponentiation to base w, and is good enough to name all the
ordinals below ¢y, the least ordinal ¢ with w® = ¢, the least critical ordinal. Thus this

system closes off at
A[l] = Nezxtw = ¢

the first ordinal in our sequence. Notice how this uses Next, the simplest helpful function.
To go beyond €¢;, we must name larger critical ordinals. Since

€, = Next'™®w = Next'T*0

we can do this by iterating Next. With these ordinals we can extend the Cantor normal
form for quite a bit further. This extended system closes off at the least ordinal v with
v = Next’w, which is

A2l = [o]Nextw = ¢,

22

the second ordinal in our sequence. This ordinal rarely gets a mention. I don’t know what
it has done to deserve that. I hope it is not some cardinal sin.

The next extension was made by Veblen. In [9] he constructed what we now call the
Veblen hierarchy, and various iterated extensions of that. Let’s try to understand what
he did.

He introduced the notion (but not the terminology) of a normal function. He actually
works with general normal functions but here, as in the rest of the paper, we may restrict
our attention to big normal functions. His Theorem 4 shows that each normal function has
arbitrarily large fixed points, and these fixed points are closed under countable suprema.
In fact, in our notation, his proof introduces the second level function Fix.

At the top of his page 284 he introduces the first derived function of a normal function
f. This is the function f’ that enumerates the fixed points of f, the function

o — (Fi:z:f)HaO

in our notation. His proof of his Theorem 4 shows that this function is normal.

In his Theorems 5 and 6 he shows that the process f +— f’ can be iterated, and so
produces an ordinal indexed hierarchy of normal functions. This is what we now call the
Veblen hierarchy on the base f. Let’s set this up in our notation.

We start from any normal function f : Qrd’. In words we set

¢Lf]0 =f
o[f](a + 1) = enumeration of fixed points of ¢|[f]|a
oLfIA = enumeration of common fixed points of ¢[f]a for all @ < A

for each ordinal o and limit ordinal A. This gives us a whole hierarchy of normal functions
with a substantial harvest of fixed points. With hindsight we see that we may generate
such a hierarchy ¢[f] on any fruitful function f, and this does have some simplifying
consequences.

Let Veb : Ord” be function given by

Vebf¢ = h'*°0 where h = Fix f

for f : Ord’ and ¢ € Ord. Thus for each f € Fruit the function Vebf enumerates the
fixed points of f. This second level function Veb can be iterated to produce a slightly
different hierarchy

ar— Veb®f

of fruitful functions on any fruitful base function f. This is closely related to the Veblen
hierarchy ¢[f], but we have to remember that for each limit ordinal A the accumulation
level

Veb f

need not be normal (even if the base function f is normal).
To explain the precise connection we need an observation about directed families of
fruitful functions.

6.1 LEMMA. For each countable directed family F of fruitful functions we have

Fiz(\/ F) = \/ Fiz[F|

and the common fized points of the members of F are the fized points of the function \/ F.

23

As a particular case of this, for each limit ordinal A\ the common fixed points of the
family
{Veb“f|a < A}

are precisely the fixed points of the function
Vebf = \/{ Veb®f|a < \}
to give the following.

6.2 LEMMA. We have
Olf1(1+ o) = Veb™*' f

for each fruitful function f and ordinal c.

This description of ¢[f] omits the base function f = ¢[f]0 and each limit level of the
iteration hierarchy. As we will see in a moment, each generated function ¢[f](1 + «) is
normal.

By Lemma 3.10 we have two function

Fix : Fruit —— Help Enm : Help —— Fruit

given by
Fix f(=least v with (< v = fv Enm ha = b0

for each f € Fruit, h € Help and ordinals «, (. Recall also that Enm h is normal. These
two functions can be composed both ways to produce functions we have seen already.

6.3 LEMMA. Both
Veb = Enm o Fix [0] = Fix o Enm
hold.

Proof. The left hand equality is more or less the definition of Veb. The verification
of the right hand equality takes just a little longer.
For each helpful function h and ordinal ¢ we have

[0]h¢ = least v with (< v = h¥0
= least v with ¢ < v = A0
= least v with (< v = Enmh(= Fiz(Enmh)(

for the required result. n

We now have
Fix o Veb = Fixz o Enm o Fixz = [0] o Fix

and this equality can be generalized.

6.4 LEMMA. We have
Fix o Veb” = [0]* o Fix

for each ordinal o.

24

Proof. This follows by induction on «. The base case is trivial, the induction step
follows by the observation above, and the induction leap to a limit ordinal follows by
Lemma 6.1. [

This result gives us a more ‘helpful” description of the Veblen hierarchy.
6.5 THEOREM. For each fruitful function f and ordinal o we have
S0+ a) = Enm([o]h)
where h = Fix f.
Proof. Using Lemmas 6.2 and 6.4 we have

S +a) = Veb™ ' f
= (Vebo Veb™)f
= (Enm o Fixz o Veb®)f
= (Enmo[o]*o Fix)f = (Enmo[o0]%)h

for the required result [|

This hierarchy ¢[f] has certain barrier ordinals, ordinals v such that

v =o[f]v0

holds. If we try to use ¢[f] to generate ordinal notations from below then we can not get
further than the least such barrier ordinal.
As an example consider the case f = w®. Then

h = Fixf = Next

and
Vebf = Enm(Next)

enumerates the critical ordinals. The barrier ordinals of ¢[w®] are the strongly critical
ordinals.

For an arbitrary fruitful function f what should we do to bring some of the barrier
ordinals of ¢[f] into the fold? Consider the function Tf given by

fa = ¢[f](1 +a)0

for each ordinal c. This is a kind of diagonal limit through ¢[f]. Thus Veb("f) enumer-
ates the barrier ordinals of ¢[f].

Veblen shows that for each normal function f the associated function Tf is normal and
suggests that we look at the hierarchy on this base. After that we iterate his procedure.
That is the content of $3 and $4 of [9]. It is not easy reading, but we can now describe
the process in a more compact way.

Remembering the form of Enm we see that Tf is given by

Tfa = ¢[f](1 4+ a)0 = Enm([0]*h)0 = [0]*h0

for each ordinal . Here, of course, h = Fixf. By the first part of Lemma 4.6 we
immediately see that Tf is normal.

To generate ¢[Tf] in the form given by Theorem 6.5 we need to know what Fiz (ﬁf)
is. What can that be?

25

6.6 LEMMA. For each fruitful function f we have
Fiz("f) = [1][o]h
where h = Fix f.

Proof. Remembering the characteristic properties of Fix and [1] for each ordinal ¢
we have

Fiz ("f)¢ = (least v with ¢ < v ="fv =[0]"h0) = [1][0]h¢
for the required result. n

For the case f = w® the Veblen hierarchy ¢[w®] close off at
A[3] =[1][o]Nextw =T

the third ordinal in our sequence.
To approach A[4] let’s look at a few extensions of ¢[f] in the form given by Theorem
6.5. With
h = Fixf

we have

olf) o Enm(o]h)
O] o Enm([O]o‘([l][U]h)>
o[Mf] a— Enm([O]a(([l][O])2h>>

o8] o Enm([o]2((1][o])*h))

where at the S stage we iterate the construction () that number of ordinal times.
Where does this multi-hierarchy run out of steam, and what should we do then?
Consider the zeroth function

o[Pf10

and consider the zeroth ordinal
#1100 = Bram (([1][0])°h)0 = ([1][0])°h0

of that function. The function
B — ([1][0])’h0

is a kind of diagonal limit through the multi-hierarchy. Thus we should now generate the
Veblen hierarchy on this base function, and then repeat our previous iteration.
By applying Fix to this function we get

[1]*[o]h

26

and so we obtain a second multi-hierarchy
a— Enm([o]o‘([l]Q[o]h)>
o — Enm([o]a(([l]Z[o])Zh)>

o — Enm([oJ?(alﬂoJ)ﬂh))

which extends the previous one.
We are beginning to see some structure here. For each helpful H € H® we have a

hierarchy of functions
a+— Enm([o]*(Hh))

determined by H. Thus if we can find a way of passing through H® then we can produce
a large family of hierarchies. This is what Veblen’s $3 and $4 are about although, of
course, he didn’t explain it in this way.

Veblen described an intricate system of indexing which, with hindsight, can be seen to
produce a large collection of members of H®). I think it is fair to say that by that stage
Veblen’s description is not exactly crystal clear.

In [6] Schiitte reorganized Veblen’s method to produce an exotic, not to say eccentric,
method of indexing many layers of Veblen hierarchies. He produced certain arrays of
ordinals, Schiitte brackets, which interact with a normal function to produce an ordinal.
Using helpful functions in general, and the two functions [0] and [1] in particular, it is
possible to give an explicit description of each bracket without going through any kind of
recursion.

Looking again at the various hierarchies generated above, we see there is a rather
simple way of passing through all of them. The function

o — Enm([1]*[o]h)

is a kind of diagonal limit through the whole battery of hierarchies. For the particular
case f = w*® the least barrier ordinal of this hierarchy is

A[4] = [2][1][0] Next w

the next ordinal in our sequence. This is sometimes known as the Ackermann ordinal.
It is the upper bound of the ordinals that can be named by the methods developed by
Veblen and later by Schiitte.

The helpful functions on level 2 generated by the Veblen-Schiitte methods by no means
exhaust H®). Those methods use only [0] and [1]. We now have [2],[3]... and these
can be combined to produce many more members of H®, and each of these can be use
to generate a Veblen-like hierarchy.

The next few ordinals in our sequence are

Al5] = [3][2][1][0o]Next w = least v with v = [2]"[1][0o]Nextw
Al6] = [4][3][2][1][o]Next w = least v with v = [3]"[2][1][o] Nextw
A7) = [5][4][3][2][1][0o] Next w = least v with v = [4]"[3][2][1][0o] Nextw

27

and so on. As far as I know these have not appeared explicitly in any method of generating
ordinals.

The modern method of generating ordinals seems to be quite different. It uses an
appropriate collapsing function

¥ :[0,Q7) — [0,9)

which enumerates the critical ordinals. Of course, such a function must be constant for
long stretches. The precise details of ¢ are not needed here. Using an iteration of the
exponentiation function to base €2, for each | < w let

Vi = ((2%)'0)
to obtain a fundamental sequence V|[-] for the Howard ordinal. For instance
V0 =¢0 V[]=v¢l V2=vQ V[3=¢Q% V[4]=yQ)

and so on. As in [7], with a bit of effort it can be shown that V[-] and A[-] are essentially
the same sequence, that is

All=w<e=VI]0] Alll]=¢<e =V][l] All+2]=V][+2]

for each [< w. As can be seen from the analysis in [7], it is not so much the size of the
¢ that determines the output ¥&, but the type structure hidden in a canonical expansion
of ¢ to base 2. The method of generating ordinals ‘from below’ simply makes that type
structure and associated gadgetry more explicit.

Let me conclude with some remarks on the work of Setzer as described in [4].

Here and in [7] I used the phrase ‘from below’ to describe the method of naming
ordinals based on iterates of the helpful functions [:]. This is merely a convenient way of
distinguishing that method from the modern method, which I described as ‘from above’.
Nevertheless, there is clearly a more fundamental difference between the two methods. In
[4] Setzer puts more meat on the skeletal phrase ‘from below’. That work is clearly an
important step towards making the difference between the two methods quite precise.

As part of the analysis he uses extended Schiitte brackets in which weaker version are
nested to produce more powerful versions. It can be shown that the standard Schiitte
brackets are essentially those helpful functions that can be built in a certain way from [o]
and [1]. Some of the calculations in [4] seem to suggest that the extended Schiitte brackets
can be built in a similar way from [2],[3],[4],... and so on. It would be interesting to
see the details worked out.

References
[1] Archimedes: The Sand Reckoner; pages 420-429 of [3].
[2] S.B. Cooper et al (eds): Sets and proofs, Cambridge University Press, 1997.
[3] J.R. Newman: The world of mathematics, vol 1, George Allen and Unwin, 1960.

[4] A. Setzer: Ordinal systems: pages 301-338 of [2].

28

[5] A. Setzer: Review of [7], Zentralblatt, Zbl 1067.03063.

[6] K. Schiitte: Kennzeichnung von Ordnungszahlen durch rekursive erklérte Functionen,
Math. Ann. 127 (1954) 15 - 32.

[7] H. Simmons: A comparison of two systems of ordinal notations, Arch. Math. Logic
43 (2004) 65-83.

[8] H. Simmons: Generating ordinal notations from below.

[9] O. Veblen: Continuous increasing functions of finite and transfinite ordinals, Trans.
Amer. Math. Soc. 9 (1908) 280-292.

29

