
A Tutorial Overview of Ordinal Notations

Jacques Bailhache (jacques.bailhache@gmail.com)

January-February 2018

1 Interest of transfinite ordinal numbers

The domain of transfinite ordinals has the particularity of being the only mathematical domain that cannot be automated.
In all other domains of mathematics, it is at least theoretically possible to deduce the theorems automatically from a formal
system consisting of a finite set of axioms and rules. But Gödel proved that given any formal system of a theory sufficiently
powerful to contain arithmetics, it is possible to build a proposition that expresses its own unprovability in this formal system.
This proposition, which is very huge, has also a meaning as an ordinary arithmetic proposition, but is very useless in ordinary
arithmetics. If the formal system is consistent, then this proposition is undecidable.
At first sight one could think that we just have to add this proposition to the system as an axiom, but this augmented system
also have its own Gödelian proposition. By adding successively Gödelian propositions, we obtain an infinite sequence of systems,
and the system defined as the union of all these systems also has its Gödelian proposition, and so on. But according to Solomon
Feferman in ”Penrose’s Gödelian argument” http://math.stanford.edu/ feferman/papers/penrose.pdf p.9 :
”one obtains completeness for all arithmetical sentences in a progression based on the transfinite iteration of the so-called global
or uniform reflection principle”
The uniform reflection principle, which is something similar to adding the Gödelian proposition as an axiom, is described for
example in John Harrison’s paper ”Metatheory and Reflection in Theorem Proving: A Survey and Critique”
http://www.cl.cam.ac.uk/ jrh13/papers/reflect.ps.gz p.18 :

` ∀n.Pr(dφ[n]e)⇒ φ[n]

Harrison also says p.19 :
”Feferman showed that a transfinite iteration based on it proves all true sentences of number theory”.
So we can say that the construction of transfinite ordinals can store all the creative part of mathematics.

2 Defining transfinite ordinal numbers

Natural numbers can be represented by sets. Each number is represented by the set of all numbers smaller than it.

• 0 = {} (the empty set)

• 1 = {0} = {{}}
• 2 = {0, 1} = {{}, {{}}}
• 3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}}
• ...

The successor of a natural number can be defined by suc(n) = n+ 1 = n ∪ {n}.
We have n ≤ p if and only if n ⊆ p.
N is the set of all natural numbers : N = {0, 1, 2, 3, . . .} The natural numbers can be generalized to what is called ”transfinite
ordinal numbers”, or simply ”ordinal numbers” or ”ordinals”, by considering that infinite sets represent ordinal numbers. N
considered as an ordinal number is written ω. ω is the least ordinal which is greater than all the numbers 0, 1, 2, 3, ... We say that
ω is a limit ordinal and 0, 1, 2, 3, ... is a fundamental sequence of ω. This is written : ω = sup{0, 1, 2, 3, ...} or ω = lim(n 7→ n)
because the n-th element (starting with 0) of the sequence is n. An ordinal does not have a unique fundamental sequence, for
example 1, 2, 3, 4, ... is also a fundamental sequence of ω, because the least ordinal that is greater than all ordinals of this
sequence is also ω (more generally the limit ordinal is the same if any number of the least items of a sequence are removed), and
the same stands for the sequence 0, 2, 4, 6, ...
Any ordinal can be defined as the least ordinal strictly greater than all ordinals of a set : the empty set for 0, {α} for the
successor of α, {α0, α1, α2, ...} for an ordinal with fundamental sequence α0, α1, α2, ...

1

The successor can be generalized to transfinite ordinal numbers : suc(ω) = ω + 1 = ω ∪ {ω} = {0, 1, 2, 3, . . . , ω}; suc(suc(ω)) =
ω + 2 = {0, 1, 2, 3, . . . , ω, ω + 1} and so on.
Then we can consider the set {0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .} which is a limit ordinal, and ω, ω + 1, ω + 2, ω + 3, . . . is a
fundamental sequence of this ordinal. This ordinal is ω + ω = ω · 2 or ω × 2 or ω2.
Then we can go on building greater and greater ordinals : ω · 3, . . . , ω · ω = ω2, ω3, . . . , ωω, ωω

ω

,

For natural numbers, arithmetical operations are defined as follows :

• addition : a+ 0 = a; a+ suc(b) = suc(a+ b)

• multiplication : a · 0 = 0; a · suc(b) = (a · b) + a

• exponentiation : a0 = 1; asuc(b) = ab · a

The definitions of arithmetical operations can be generalized to ordinals by adding canonical rules for limit ordinals :

• addition : α+ 0 = α;α+ suc(β) = suc(α+ β);α+ lim(f) = lim(n 7→ α+ f(n))

• multiplication : α · 0 = 0;α · suc(β) = (α · β) + α;α · lim(f) = lim(n 7→ α · f(n))

• exponentiation : α0 = 1;αsuc(β) = αβ · α;αlim(f) = lim(n 7→ αf(n))

Note that addition and multiplication are not commutative, for example 1 + ω = ω 6= ω + 1, because if we take 0, 1, 2, 3, ...
as fundamental sequence of ω, then a fundamental sequence of 1 + ω is 1+0, 1+1, 1+2, 1+3, ... = 1, 2, 3, 4, ... and the least
ordinal which is greater than all ordinals of this sequence is ω. We will say that ”1+” is ”absorbed” by ω. More generally, we
have 1 + α = α for any ordinal α ≥ ω.

For tutorial introductions to transfinite ordinal numbers, see also :

• Madore’s introduction in French :
http://www.madore.org/%7Edavid/weblog/2011-09-18-nombres-ordinaux-intro.html

• Pointless Gigantic List of Infinite Numbers :
https://sites.google.com/site/pointlesslargenumberstuff/home/l/pglin?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F

• Sbiis Saibian’s !!! FORBIDDEN LIST !!! of Infinite Numbers :
https://sites.google.com/site/largenumbers/home/appendix/a/infinite numbers

3 Veblen functions

The next step is the limit or least upper bound of ω, ωω, ωω
ω

, . . . which is called ε0. Note that we have ωε0 = ε0. We say that
ε0 is a fixed point (the least one) of the function α 7→ ωα.
Then we can go on with ε0 + 1, ε0 + 2, . . . , ε0 + ε0 = ε0 · 2, . . . , ε0 · ε0 = ε0

2, εε00 , ...

The limit of ε0, ε
ε0
0 , ε

ε
ε0
0

0 , . . . is called ε1. It can be shown that it is also the limit of ε0 + 1, ωε0+1, ωω
ε0+1

, . . . (see proof below).
These two fundamental sequences are examples of two ways of ascending ordinals :

• Build greater ordinals from known ones by increasing them using operations like successor, addition, multiplication, expo-
nentiation, ... This method is used by the RSH0 notation which we will study later.

• When we have found a function that, when applied to a given ordinal, gives a greater one (for example α 7→ ωα), use it ad
infinitum starting for example with 0, and then to go further use it ad infinitum starting with the successor of the previous
result, and so on. This is called an enumeration of the fixed points of this function. A fixed point of a function f is a value
(for example an ordinal) α with f(α) = α. Under some conditions (see below), the least fixed point of f is the limit of 0,
f(0), f(f(0)), f(f(f(0))), ... If it is called α, the next fixed point is the limit of α+ 1, f(α+ 1), f(f(α+ 1)), f(f(f(α+ 1))),
More generally, the least fixed point of f that is greater or equal to ζ is the limit of ζ, f(ζ), f(f(ζ)), The Veblen functions
use this method.

The required conditions are described for example in http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/Fruitful.pdf
page 8 lemma 3.9 :
For each fruitful function f and each ordinal ζ, fω(ζ + 1) is the least ordinal ν such that ζ < ν = f(ν), or the least fixed point of
f that is strictly greater than ζ (or greater than or equal to ζ + 1).
fω(ζ + 1) is the limit of ζ + 1, f(ζ + 1), f(f(ζ + 1)),
A fruitful function is a function that is inflationary, monotone, big, and continuous.

2

A function f is inflationary if α ≤ f(α), monotone if α ≤ β ⇒ f(α) ≤ f(β), big if ωα ≤ f(α) except possibly for α = 0,
continuous if f(VA) = Vf[A] where VA is the pointwise supremum of the set A.

We will now prove by induction the equivalence of the two fundamental sequences above.

We will use the notation α
...

αβ

for an an ”exponential tower” with α repeated n times.

Note that the ordinals respectively limits of the fondamental sequence whose n-th term is ε
ε

...

ε0
ω

0
0 and the one whose n-th term is

ε
ε

...

ε
ε0
0

0
0 is the same, the least fixed point of the function α 7→ ε0

α, which is greater than ω and also than ε0.

So we have proved what we want if we prove that, for any n, we have ωω
...

ωω
ε0+1

= ε
ε

...

ε0
ω

0
0 .

For n = 0, we have ωω
ε0+1

= ωω
ε0 ·ω = ωε0·ω = (ωε0)ω = ε0

ω.

Now suppose we have ωω
...

ωω
ε0+1

= ε
ε

...

ε0
ω

0
0 .

We must prove the equality for n+1, which can be written ωω
ω

...

ωω
ε0+1

= ε
ε
ε

...

ε0
ω

0
0

0 .

We have ωω
ω

...

ωω
ε0+1

= ωε
ε

...

ε0
ω

0
0 (by our hypothesis) = ωε

1+ε

...

ε0
ω

0
0 (for the same reason than 1 + ω = ω, see above) = ωε0·ε

ε

...

ε0
ω

0
0 =

(ωε0)ε
ε

...

ε0
ω

0
0 = ε

ε
ε

...

ε0
ω

0
0

0 . QED.

In a similar way, the limit of ε1, ε
ε1
1 , ε

ε
ε1
1

1 , . . . is called ε2 and is also the limit of ε1 + 1, ωε1+1, ωω
ε1+1

,
We can define the same way εn for any natural number n. Then εω is defined as the limit of ε0, ε1, ε2, ε3, . . ., and εω+1 as the

limit of εω, ε
εω
ω , ε

εεωω
ω , . . . or εω + 1, ωε

ω+1, ωω
εω+1

,
After comes εε0 , and the limit of ε0, εε0 , εεε0 , . . . which is called ζ0. This is the least fixed point of α 7→ εα. The next one
is ζ1 which is the limit of ζ0 + 1, εζ0+1, εεζ0+1

, Then we get ζ2, ζ3, . . . , ζω, ζω+1, . . . , ζε0 , . . . , ζζ0 , . . . , ζζζ0 , The limit of
0, ζ0, ζζ0 , ζζζ0 , . . . is called η0.
We can go on using successively different greek letters, or we can use functions indiced by numbers

• ϕ0(α) = ωα

• ϕ1(α) = εα
• ϕ2(α) = ζα
• ϕ3(α) = ηα
• ϕα+1(β) is the (1 + β)-th fixed point of ξ 7→ ϕα(ξ) .

or a function with two variables :

• ϕ(0, α) = ωα

• ϕ(1, α) = εα
• ϕ(2, α) = ζα
• ϕ(3, α) = ηα
• ϕ(α+ 1, β) is the (1 + β)-th fixed point of ξ 7→ ϕ(α, ξ) .

Then we can enumerate the fixed points of the function α 7→ ϕ(α, 0) and define Γα as the (1 +α)-th fixed point of this function,
or add another variable to the ϕ function and define ϕ1,0(α) or ϕ(1, 0, α) as the (1 + α)-th fixed point of this function. So we
have Γα = ϕ1,0(α) = ϕ(1, 0, α).
More generally, we can define a function with any (finite) number of variables ϕαn,αn−1,...,α1,α0

(β) = ϕ(αn, αn−1, . . . , α1, α0, β),
with ϕ(α) = ϕ0(α) = ϕ(0, α) = ωα.
The notation ϕαn,αn−1,...,α1,α0(β) has the advantage of highlighting the different role played by the last variable β.

For a complete definition of this Veblen function with finitely many variables, see for example :
https://en.wikipedia.org/wiki/Veblen function :

3

”Let z be an empty string or a string consisting of one or more comma-separated zeros 0, 0, ..., 0 and s be an empty string or a
string consisting of one or more comma-separated ordinals α1, α2, ..., αn with α1 > 0. The binary function ϕ(β, γ) can be written
as ϕ(s, β, z, γ) where both s and z are empty strings.
The finitary Veblen functions are defined as follows:

• ϕ(γ) = ωγ

• ϕ(z, s, γ) = ϕ(s, γ)

• if β > 0, then ϕ(s, β, z, γ) denotes the (1 + γ)-th common fixed point of the functions ξ 7→ ϕ(s, δ, ξ, z) for each δ < β

(...)
The limit of the ϕ(1, 0, ..., 0) where the number of zeroes ranges over ω, is sometimes known as the ”small” Veblen ordinal.
Every non-zero ordinal α less than the small Veblen ordinal (SVO) can be uniquely written in normal form for the finitary Veblen
function:
α = ϕ(s1) + ϕ(s2) + · · ·+ ϕ(sk)
where

• k is a positive integer

• ϕ(s1) ≥ ϕ(s2) ≥ · · · ≥ ϕ(sk)

• sm is a string consisting of one or more comma-separated ordinals αm,1, αm,2, ..., αm,nm where αm,1 > 0 and each αm,i <
ϕ(sm)

For limit ordinals α < SV O, written in normal form for the finitary Veblen function:

• (ϕ(s1) + ϕ(s2) + · · ·+ ϕ(sk))[n] = ϕ(s1) + ϕ(s2) + · · ·+ ϕ(sk)[n],

• ϕ(γ)[n] =

– n if γ = 1

– ϕ(γ − 1) · n if γ is a successor ordinal

– ϕ(γ[n]) if γ is a limit ordinal

• ϕ(s, β, z, γ)[0] = 0 and ϕ(s, β, z, γ)[n+ 1] = ϕ(s, β − 1, ϕ(s, β, z, γ)[n], z) if γ = 0 and β is a successor ordinal,

• ϕ(s, β, z, γ)[0] = ϕ(s, β, z, γ− 1) + 1 and ϕ(s, β, z, γ)[n+ 1] = ϕ(s, β− 1, ϕ(s, β, z, γ)[n], z) if γ and β are successor ordinals,

• ϕ(s, β, z, γ)[n] = ϕ(s, β, z, γ[n]) if γ is a limit ordinal,

• ϕ(s, β, z, γ)[n] = ϕ(s, β[n], z, γ) if γ = 0 and β is a limit ordinal,

• ϕ(s, β, z, γ)[n] = ϕ(s, β[n], ϕ(s, β, z, γ − 1) + 1, z) if γ is a successor ordinal and β is a limit ordinal. ”

The Veblen function can be generalized to transfinitely many variables with a finite number different from 0. Instead of writing
the list of all the variable of the Veblen function, we can write only the non zero variables with position as indice, for example
ϕ(α, 0, β, γ) = ϕ(α3, β1, γ0). We can then generalize the Veblen function by allowing any ordinal as indices, writing for example
SV O = ϕ(1ω). The limit of the ordinals that can be written with this notation is called the large Veblen ordinal (LVO).

According to Wikipedia, ”The definition can be given as follows: let α be a transfinite sequence of ordinals (i.e., an ordinal
function with finite support) which ends in zero (i.e., such that α0=0), and let α[0 7→ γ] denote the same function where the
final 0 has been replaced by γ. Then γ 7→ ϕ(α[0 7→ γ]) is defined as the function enumerating the common fixed points of all
functions ξ 7→ ϕ(β) where β ranges over all sequences which are obtained by decreasing the smallest-indexed nonzero value of
α and replacing some smaller-indexed value with the indeterminate ξ (i.e., β = α[ι0 7→ ζ, ι 7→ ξ] meaning that for the smallest
index ι0 such that αι0 is nonzero the latter has been replaced by some value ζ < αι0 and that for some smaller index ι < ι0 , the
value αι = 0 has been replaced with ξ).”

Schütte brackets or Klammersymbols are another way to write Veblen fuctions with transfinitely many variables. A Schütte
bracket consists in a matrix with two lines, with the positions of the variables in the second line in increasing order, and the
corresponding values in the first line. This matrix is preceded by the function ξ 7→ ϕ(ξ). If we take ξ 7→ ωξ, we get the equivalent
of the Veblen function. With this notation, the previous example is written :

(ξ 7→ ωξ)

(
γ β α
0 1 3

)
In some of his papers, Harold Simmons puts the function after the matrix, which is more logical, the matrix being considered as
a function which, when applied to a function, gives an ordinal :

4

(
γ β α
0 1 3

)
(ξ 7→ ωξ)

When the function at the left of the matrix is ξ 7→ ωξ, it is sometimes omitted. Example :(
γ β α
0 1 3

)
The corresponding fundamental sequences can be found in https://sites.google.com/site/travelingtotheinfinity/fundamental-
sequences-for-extended-veblen-function .

Another possible notation is to represent the parameters of the ϕ function by a polynom of variable Ω where the exponent

corresponds to the position of the variable, for example ϕ(α, 0, β, γ) = ϕ(γ0, β1, α3) = (ξ 7→ ωξ)

(
γ β α
0 1 3

)
= ϕ(Ω3 ·α+Ω·β+γ).

For Ω, we can choose an ordinal which is greater than all the ordinals we want to produce. Since they all are countable, we can
take for example Ω = ω1 which is the least uncountable ordinal. The method consisting in using uncountable ordinals to define
countable ordinals is called ”collapsing”. We will see later other examples of notations using this method.
Note that ϕ(1, 0) = ϕ(Ω) is the least α such that α = ϕ(α) = ωα (the least fixed point of α 7→ ωα);ϕ(1, 0, 0) = ϕ(Ω2) = ϕ(Ω ·Ω)
is the least α such that α = ϕ(α, 0) = ϕ(Ω · α). Generally speaking, we can see that f(Ω) is the least fixed point of f. We shall
see other examples of this equality later concerning ordinal collapsing functions. Note also that ”Ω” can be replaced by ”1,0” in
the formulas.

See Veblen’s article ”Continuous Increasing Functions of Finite and Transfinite Ordinals” (http://www.ams.org/journals/tran/1908-
009-03/S0002-9947-1908-1500814-9/S0002-9947-1908-1500814-9.pdf) for more information.

Here is an Agda implementation of the Veblen function with transfinitely many variables :

{-

A definition of the large Veblen ordinal in Agda

by Jacques Bailhache, March 2016

See https://en.wikipedia.org/wiki/Veblen_function

(1) phi(a)=w**a for a single variable,

(2) phi(0,an-1,...,a0)=phi(an-1,...,a0), and

(3) for a>0, c->phi(an,...,ai+1,a,0,...,0,c) is the function enumerating the common fixed points of the

functions x->phi(an,...,ai+1,b,x,0,...,0) for all b<a.

(4) Let a be a transfinite sequence of ordinals (i.e., an ordinal function with finite support) which ends in

zero (i.e., such that a0=0), and let a[0->c] denote the same function where the final 0 has been replaced

by c.

Then c->phi(a[0->c]) is defined as the function enumerating the common fixed points of all functions

x->phi(b) where b ranges over all sequences which are obtained by decreasing the smallest-indexed nonzero

value of a and replacing some smaller-indexed value with the indeterminate x (i.e., b=a[i0->z,i->x]

meaning that for the smallest index i0 such that ai0 is nonzero the latter has been replaced by some value

z<ai0 and that for some smaller index i<i0, the value ai=0 has been replaced with x).

-}

module LargeVeblen where

data Nat : Set where

5

O : Nat

1+ : Nat -> Nat

data Ord : Set where

Zero : Ord

Suc : Ord -> Ord

Lim : (Nat -> Ord) -> Ord

-- rpt n f x = f^n(x)

rpt : {t : Set} -> Nat -> (t -> t) -> t -> t

rpt O f x = x

rpt (1+ n) f x = rpt n f (f x)

-- smallest fixed point of f greater than x, limit of x, f x, f (f x), ...

fix : (Ord -> Ord) -> Ord -> Ord

fix f x = Lim (\n -> rpt n f x)

w = fix Suc Zero -- not a fixed point in this case !

-- cantor a b = b + w^a

cantor : Ord -> Ord -> Ord

cantor Zero a = Suc a

cantor (Suc b) a = fix (cantor b) a

cantor (Lim f) a = Lim (\n -> cantor (f n) a)

-- phi0 a = w^a

phi0 : Ord -> Ord

phi0 a = cantor a Zero

-- Another possibility is to use phi’0 instead of phi0 in the definition of phi,

-- this gives a phi function which grows slower

phi’0 : Ord -> Ord

phi’0 Zero = Suc Zero

phi’0 (Suc a) = Suc (phi’0 a)

phi’0 (Lim f) = Lim (\n -> phi’0 (f n))

-- Associative list of ordinals

infixr 40 _=>_&_

data OrdAList : Set where

Zeros : OrdAList

=>&_ : Ord -> Ord -> OrdAList -> OrdAList

-- Usage : phi al, where al is the associative list of couples index => value ordered by increasing values,

-- absent indexes corresponding to Zero values

phi : OrdAList -> Ord

phi Zeros = phi0 Zero -- (1) phi(0) = w**0 = 1

phi (Zero => a & Zeros) = phi0 a -- (1) phi(a) = w**a

phi (k => Zero & al) = phi al -- eliminate unnecessary Zero value

phi (Zero => a & k => Zero & al) = phi (Zero => a & al) -- idem

phi (Zero => a & Zero => b & al) = phi (Zero => a & al) -- should not appear but necessary for completeness

phi (Zero => Lim f & al) = Lim (\n -> phi (Zero => f n & al)) -- canonical treatment of limit

phi (Suc k => Suc b & al) = fix (\x -> phi (k => x & Suc k => b & al)) Zero

-- (3) least fixed point

phi (Zero => Suc a & Suc k => Suc b & al) = fix (\x -> phi (k => x & Suc k => b & al)) (Suc (phi (Zero => a &

Suc k => Suc b & al))) -- (3) following fixed points

6

phi (Suc k => Lim f & al) = Lim (\n -> phi (Suc k => f n & al)) -- idem

phi (Zero => Suc a & Suc k => Lim f & al) = Lim (\n -> phi (k => Suc (phi (Zero => a & Suc k => Lim f & al)) &

Suc k => f n & al)) -- idem

phi (Lim f => Suc b & al) = Lim (\n -> phi (f n => (Suc Zero) & Lim f => b & al))

phi (Zero => Suc a & Lim f => Suc b & al) = Lim (\n -> phi (f n => phi (Zero => a & Lim f => Suc b & al) & Lim

f => b & al))

phi (Lim f => Lim g & al) = Lim (\n -> phi (Lim f => g n & al))

phi (Zero => Suc a & Lim f => Lim g & al) = Lim (\n -> phi (f n => phi (Zero => a & Lim f => Lim g & al) & Lim

f => g n & al))

SmallVeblen = phi (w => Suc Zero & Zeros)

LargeVeblen = fix (\x -> phi (x => Suc Zero & Zeros)) (Suc Zero)

{-

Normally it should terminate because the parameter of phi lexicographically decreases, but Agda is not clever enough to see it,

so it must be called with no termination check option :

$ agda -I --no-termination-check LargeVeblen.agda

_

____ | |

/ __ \ | |

| |__| |___ __| | ___

| __ / _ \/ _ |/ __\ Agda Interactive

| | |/ /_\ \/_| / /_| \

|_| |___ /_________/ Type :? for help.

__/ /

__/

The interactive mode is no longer supported. Don’t complain if it doesn’t work.

Checking LargeVeblen (/perso/ord/LargeVeblen.agda).

Finished LargeVeblen.

Main> phi Zeros

Suc Zero

4 Going beyond Veblen function with transfinitely many variables

We start with the large Veblen ordinal which is the least fixed point of the function α 7→ ϕ(1α). Then we consider a function
F which enumerates the fixed points of α 7→ ϕ(1α). So we have LVO = F(0). The next fixed point F(1) is the limit of
LV O + 1, ϕ(1LV O+1), ϕ(1ϕ(1LVO+1)), ...
Then we can consider the fixed points of the function F and define a function G which enumerates these fixed points, then a
function H which enumerates the fixed points of G, and so on.
This construction is similar to ε which enumerates the fixed points of α 7→ ωα, ζ which enumerates the fixed points of ε, η which
enumerates the fixed points of ζ.
Like we have defined :
- ϕ0(α) = ωα

- ϕ1(α) = ε(α)
- ϕ2(α) = ζ(α)
...
we can define :
- ϕ+

0 (α) = F (α)
- ϕ+

1 (α) = G(α)
- ϕ+

2 [α) = H(α)
...
With this notation we can write LV O = ϕ+

0 (0).

7

Then ϕ+
α (β) can be written as a binary function ϕ+(α, β) which can be generalized to finitely many variables like ϕ+(α, β, γ)

and transfinitely many variables like ϕ+(1ω).
Then we can consider the fixed points of the function α 7→ ϕ+(1α) and define a function ϕ++

0 which enumerates these fixed
points.
The same way we can define ϕ+++, ϕ++++, ...
We can then define a new notation :
- Φ0 = ϕ
- Φ1 = ϕ+

- Φ2 = ϕ++

...

There is another way to express this construction.
There are different conventions for ϕ0(x), like ωx or εx. We can write explicitely the convention chosen for ϕ0 by writing
”ϕf (α, β)” for ”ϕα(β) with function f used for ϕ0”. With this notation we have:
- ϕf (0, β) = f(β)
- ϕf (α+ 1, β) = (1 + β)th fixed point of the function β 7→ ϕf (α, β)
- ϕf (λ, β) = (1 + β)th common fixed point of the function β 7→ ϕf (α, β) for all α < λ, if λ is a limit ordinal.
(See http://www.cs.man.ac.uk/ hsimmons/TEMP/OrdNotes.pdf)
Then we generalize the binary function ϕf (α, β) to finitely many variables: for example ϕf (1, 0, α) = (1 + α)th common fixed
point of the function ξ 7→ ϕ(ξ, 0) (see https://en.wikipedia.org/wiki/Veblen function) and to infinitely many variables with a
finite number of them different from 0, for example ϕf (1ω).
Then we can define new ϕ functions by taking for ϕ0 the function ξ 7→ ϕf (1ξ) and define functions ϕξ 7→ϕf (1ξ) with 2 variables,
with finitely many variables and with transfinitely many variables.
To make a correspondence with my previous construction, if f is the function ξ 7→ ωξ, then ϕf (α, β) corresponds to what I wrote
ϕα(β), and ϕξ 7→ϕf (1ξ)(α, β) to ϕ+

α (β).
If we define the function S by S(f)(ξ) = ϕf (1ξ), then ϕξ 7→ϕf (1ξ) can be written ϕS(f). We can then consider ϕS(S(f)) and so on.

Given an ordinal α, we can iterate transfinitely ”α times” the application of S to an initial function f0, for example f0(ξ) = ωξ,
to obtain a function which I will write Sα(f0). We can use this function to define a function ϕSα(f0) which permits to construct
big ordinals.

5 Simmons notation

Harold Simmons defined a notation (see http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/ordinal-notations.html
) based on fixed points enumeration which ”contains” Veblen functions and permits to go further.
He uses the lambda calculus formalism, in which f x represents the application of function f to x, and f x y = (f x) y the
application of function f to x which gives another function which is applied to y giving the final result. He uses tho notation
x 7→ y to represent the function which, when applied to x, gives y (instead of the traditional lambda calculus notation λx.y).
He also uses the notation ω• for α 7→ ωα.
f ◦ g represents the composition of functions f and g : (f ◦ g)α = f(gα).
fα is a canonical generalization of of exponentiation of a function to an ordinal power : fn represents f ◦ f ◦ . . . ◦ f with f
repeated n times, fωζ is the limit of ζ, f ζ, f(f ζ), . . ., fω+1ζ = f(fωζ) and so on.

More precisely, Simmons gives the following definitions in http://www.cs.man.ac.uk/ hsimmons/TEMP/OrdNotes.pdf page 11 :

• g0ζ = ζ

• gα+1ζ = g(gαζ)

• gλζ = V {gαζ|α < λ} (if λ is a limit ordinal, where V denotes the poinwise supremum)

and the following equivalent definitions in http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/Fruitful.pdf page 4 :

• g0 = id

• gα+1 = g ◦ gα
• gλ = V {gα|α < λ}

and he generalizes these definitions to higher order functions.

8

Then Simmons defines the following functions :
Fix fζ = fω(ζ + 1) = limit of ζ + 1, f(ζ + 1), f(f(ζ + 1)), . . . is the least fixed point of the function f which is strictly greater
than ζ, which means the least ordinal ν satisfying f ν = ν and ν > ζ.
Next = Fix ω• = Fix(α 7→ ωα) ; Next ζ is the next εα after ζ.
[0]h = Fix(α 7→ hα0)
[1]hg = Fix(α 7→ hαg0)
[2]hgf = Fix(α 7→ hαgf0)
... and so on ...

In http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/OrdSlides.pdf Simmons gives another equivalent definition :
[0]h = Fix(α 7→ hαω)
[1]hg = Fix(α 7→ hαgω)
[2]hgf = Fix(α 7→ hαgfω)

Simmons also defines :
V eb f ζ = (Fix f)1+ζ0 is the (1 + ζ)-th fixed point of f
Enm h α = h1+α0
V eb = Enm ◦ Fix
[0] = Fix ◦ Enm
Fix ◦ V eb = Fix ◦ Enm ◦ Fix = [0] ◦ Fix
Fix ◦ V ebα = [0]α ◦ Fix
∆[0] = ω
∆[1] = Next ω = ε0

∆[2] = [0]Next ω = least ν with ν = Nextνω = ζ0
∆[3] = [1][0]Next ω = least ν with ν = [0]νNext ω = Γ0

∆[4] = [2][1][0]Next ω = least ν with ν = [1]ν [0]Next ω = LV O (large Veblen ordinal)
... and so on ...

5.1 Implementation

Here is an implementation of the Simmons hierarchy in Haskell :

module Simmons where

-- Natural numbers

data Nat

= ZeroN

| SucN Nat

-- Ordinals

data Ord

= Zero

| Suc Ord

| Lim (Nat -> Ord)

-- Ordinal corresponding to a given natural

ordOfNat ZeroN = Zero

ordOfNat (SucN n) = Suc (ordOfNat n)

-- omega

w = Lim ordOfNat

lim0 s = Lim s

lim1 f x = lim0 (\n -> f n x)

lim2 f x = lim1 (\n -> f n x)

9

-- this does not work :

-- lim ZeroN s = Lim s

-- lim (SucN p) f = \x -> lim p (\n -> f n x)

-- f^a(x)

fpower0 f Zero x = x

fpower0 f (Suc a) x = f (fpower0 f a x)

fpower0 f (Lim s) x = Lim (\n -> fpower0 f (s n) x)

fpower l f Zero x = x

fpower l f (Suc a) x = f (fpower l f a x)

fpower l f (Lim s) x = l (\n -> fpower l f (s n) x)

-- fix f z = least fixed point of f which is > z

fix f z = fpower lim0 f w (Suc z) -- Lim (\n -> fpower0 f (ordOfNat n) (Suc z))

-- cantor b a = a + w^b

cantor Zero a = Suc a

cantor (Suc b) a = fix (cantor b) a

cantor (Lim s) a = Lim (\n -> cantor (s n) a)

-- expw a = w^a

expw a = cantor a Zero

-- next a = least epsilon_b > a

next = fix expw

-- [0]

simmons0 h = fix (\a -> fpower lim0 h a Zero)

-- [1]

simmons1 h1 h0 = fix (\a -> fpower lim1 h1 a h0 Zero)

-- [2]

simmons2 h2 h1 h0 = fix (\a -> fpower lim2 h2 a h1 h0 Zero)

-- Large Veblen ordinal

lvo = simmons2 simmons1 simmons0 next w

$ hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Bugs: http://hackage.haskell.org/trac/hugs

|| || Version: September 2006 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Hugs> :load simmons

Simmons> lvo

ERROR - Cannot find "show" function for:

*** Expression : lvo

10

*** Of type : Ord

Simmons>

5.2 Correspondence with Veblen functions

ε0 is the next εα after 0 (or after ω, or after any ordinal less than ε0, so we have ε0 = Next 0 = Next ω.
ε1 is the next εα after ε0, so we have ε1 = Next ε0 = Next (Next 0) = Next20 = Next (Next ω) = Next2ω.
ε2 is the next εα after ε1, so we have ε2 = Next ε1 = Next (Next (Next 0)) = Next30 = Next (Next (Next ω)) = Next3ω.
...
εω is the limit of ε0, ε1, ε2, It is the limit of Next10, Next20, Next30, ... which is Nextω0.
More generally, we have εα = ϕ(1, α) = Next1+α0 = Next1+αω.

ζ0 = ϕ(2, 0) is the least fixed point of α 7→ εα (greater than 0), so ζ0 = Fix(α 7→ εα)0 = Fix(α 7→ Next1+α0)0 = Fix(α 7→
Nextα0)0 (because the ”1+” is ”absorbed” after a few iterations) = [0]Next 0. Since ζ0 is also greater than ω, it is also [0]Next ω
according to a similar computation.
ζ1 = ϕ(2, 1) is the next fixed point of α 7→ εα, the least one which is strictly greater than ζ0, so ζ1 = Fix(α 7→ εα)ζ0 = Fix(α 7→
Nextα0)ζ0 = [0]Next ζ0 = [0]Next([0]Next 0) = ([0]Next)20 = [0]Next([0]Next ω) = ([0]Next)2ω.
More generally, ζα = ([0]Next)1+α0.
Similar computations give η0 = ϕ(3, 0) = [0]2Next 0 and ηα = ([0]2Next)1+α0.
More generally, ϕ(1 + β, α) = ([0]βNext)1+α0 or ([0]βNext)1+αω.

Γ0 = ϕ(1, 0, 0) is the least fixed point (greater than 0) of the function α 7→ ϕ(α, 0) or α 7→ ϕ(1 + α, 0) (for the same reason
of ”absorbsion” of ”1+” than previously), so Γ0 = Fix(α 7→ ϕ(1 + α, 0)0 = Fix(α 7→ ([0]αNext)(1 + 0)0)0 = Fix(α 7→
[0]αNext 0)0 = [1][0]Next 0.
Γ1 = ϕ(1, 0, 1) is the next fixed point : Γ1 = Fix(α 7→ [0]αNext 0)Γ0 = [1][0]Next Γ0 = [1][0]Next ([1][0]Next 0) =
([1][0]Next)20.
More generally, we have ϕ(1, 0, α) = ([1][0]Next)1+α0.
ϕ(1, 1, 0) is the least fixed point (greater than 0) of the function α 7→ ϕ(1, 0, α), so it is Fix(α 7→ ϕ(1, 0, α))0 = Fix(α 7→
([1][0]Next)1+α0)0 = Fix(α 7→ ([1][0]Next)α0)0 (absorbsion of 1+) = [0]([1][0]Next)0.
ϕ(1, 1, 1) is the next fixed point Fix(α 7→ ([1][0]Next)α0)ϕ(1, 1, 0) = ([0]([1][0]Next)([0]([1][0]Next)0) = ([0]([1][0]Next))20.
More generally, ϕ(1, 1, α) = ([0]([1][0]Next))1+α0.
ϕ(1, 2, 0) is the least fixed point (greater than 0) of the function α 7→ ϕ(1, 1, α), F ix(α 7→ ϕ(1, 1, α))0 = Fix([0]([1][0]Next)1+α0)0 =
Fix(α 7→ ([0]([1][0]Next))α0)0 = [0]([0]([1][0]Next))0 = [0]2([1][0]Next)0.
Like previously, ϕ(1, 2, α) is the (1 + α)-th fixed point of the previous function, which is ([0]2([1][0]Next))1+α0.
More generally, ϕ(1, β, α) = ([0]β([1][0]Next))1+α0.
ϕ(2, 0, 0) is the least fixed point (greater than 0) of the function β 7→ ϕ(1, β, 0), which is Fix(α 7→ ϕ(1, β, 0))0 = Fix(β 7→
([0]β([1][0]Next))1+00)0 = Fix(β 7→ [0]β([1][0]Next)0)0 = [1][0]([1][0]Next)0 = ([1][0])2Next 0.
The (1 + α)-th fixed point of the previous function is ϕ(2, 0, α) = (([1][0])2Next)1+α0.
The least fixed point of the function α 7→ ϕ(2, 0, α) is ϕ(2, 1, 0) = Fix(α 7→ ϕ(2, 0, α))0 = Fix(α 7→ (([1][0])2Next)(1 + α)0)0 =
Fix(α 7→ (([1][0])2Next)α0) = [0](([1][0])2Next)0 and its (1 + α)-th fixed point is ϕ(2, 1, α) = ([0](([1][0])2Next))1+α0.
More generally, we have ϕ(2, β, α) = ([0]β(([1][0])2Next))1+α0.

The general formula with three variables (with γ 6= 0) is ϕ(γ, β, α) = ([0]β(([1][0])γNext))1+α0.
In particular, we have ϕ(γ, 0, 0) = ([1][0])γNext0.

ϕ(1, 0, 0, 0) is the least fixed point of the function γ 7→ ϕ(γ, 0, 0), F ix(γ 7→ ϕ(γ, 0, 0))0 = Fix(γ 7→ ([1][0])γNext 0)0 =
[1]([1][0])Next 0 = [1]2[0]Next 0.
All of these computations could be done with ω instead of 0 at the end of the formulas so we also have ϕ(γ, β, α) = ([0]β(([1][0])γNext))1+αω.
In a similar way, we can obtain the formula with 4 variables :
ϕ(1, 0, 0, α) = ([1]2[0]Next)1+α0
ϕ(1, 0, 1, 0) = Fix(α 7→ ([1]2[0]Next)α0)0 = [0]([1]2[0])0
ϕ(1, 0, 1, α) = ([0]([1]2[0]Next))1+α0
ϕ(1, 0, β, α) = ([0]β([1]2[0]Next))1+α0

11

ϕ(1, 1, 0, 0) = Fix(α 7→ ϕ(1, 0, α, 0)]0 = Fix(α 7→ [0]α([1]2[0]Next)0]0 = [1][0]([1]2[0]Next)0
ϕ(1, 1, 0, α) = ([1][0]([1]2[0]Next))1+α0
ϕ(1, 1, 1, 0) = Fix(α 7→ ϕ(1, 1, 0, α))0 = Fix(α 7→ ([1][0]([1]2[0]Next))α0)0 = [0]([1][0]([1]2[0]Next))0
ϕ(1, 1, 1, α) = ([0]([1][0]([1]2[0]next)))1+α0
ϕ(1, 1, β, α) = ([0]β([1][0]([1]2[0]Next)))1+α0
ϕ(1, 2, 0, 0) = Fix(α 7→ ϕ(1, 1, α, 0))0 = Fix(α 7→ [0]α([1][0]([1]2[0]next))0)0 = [1][0]([1][0]([1]2[0]Next))0 = ([1][0])2([1]2[0]Next)0
ϕ(1, 0, 0, 0) = [1]2[0]Next0
ϕ(1, 1, 0, 0) = [1][0]([1]2[0]Next)0
ϕ(1, 2, 0, 0) = ([1][0])2([1]2[0]Next)0
ϕ(1, γ, 0, 0) = ([1][0])γ([1]2[0]Next)0
ϕ(1, γ, β, α) = ([0]β(([1][0])γ([1]2[0]Next)))1+α0
ϕ(2, 0, 0, 0) = Fix(α 7→ ϕ(1, α, 0, 0)]0 = Fix(α 7→ ([1][0])α([1]2[0]Next)0]0 = [1]([1][0])([1]2[0]Next)0 = [1]2[0]([1]2[0]Next)0 =
([1]2[0])2Next0
ϕ(δ, 0, 0, 0) = ([1]2[0])δNext 0
The general formula with four variables is :
ϕ(δ, γ, β, α) = ([0]β(([1][0])γ(([1]2[0])δNext)))1+α0 = ([0]β(([1][0])γ(([1]2[0])δNext)))1+αω
and so on.

The small Veblen ordinal is the limit of :
ϕ(1) = ω, ϕ(1, 0) = Next ω, ϕ(1, 0, 0) = [1][0]Next ω, ϕ(1, 0, 0, 0) = [1]2[0]Next ω, ϕ(1, 0, 0, 0, 0) = [1]3[0]Next ω,
This limit is [1]ω[0]Next ω = [1]ω[0]Next 0.

Allowing variables at any finite or transfinite positions (which is equivalent to Schütte brackets or Klammersymbols) gives
ordinals smaller than the large Veblen ordinal which is the least fixed point of the function α 7→ ϕ(1α). It is Fix(α 7→ ϕ(1α))0 =
Fix(α 7→ [1]α[0]Next 0)0 = [2][1][0]Next 0
[2][1][0]Next 0 or [2][1][0]Next ω.
The conversion rule from Schütte Klammersymbol to Simmons notation are described by Simmons in his paper : http://www.cs.man.ac.uk/ hsimmons/ORDINAL-
NOTATIONS/FromBelow.pdf (Simmons also wrote other papers but it seems to me that they contain inaccuracies and maybe
even errors).
In summary :
Fix fζ = fω(ζ + 1)
Enm h α = h1+α0
Next = Fix(α 7→ ωα)
[0]h = Fix(α 7→ hα0)
[1]hg = Fix(α 7→ hαg0)

∇
[
α+ 1
i+ 1

]
= ([1]i[0])1+α if i 6= 0; [0]α if i = 0

∇
[
α1 + 1 . . . αs + 1
i1 + 1 . . . ıs + 1

]
= ∇

[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
where f ◦ g is the composition of functions f and g : (f ◦ g)x = f (g x)

Sch

[
1 + α1 . . . 1 + αs
1 + i1 . . . 1 + is

]
= Enm ◦ ∇

[
1 + α1 . . . 1 + αs
1 + i1 . . . 1 + is

]
o F ix

f may be any function but it is usually α 7→ ωα.

f

(
ζ 1 + α1 . . . 1 + αs
0 1 + i1 . . . 1 + is

)
= Sch

[
1 + α1 . . . 1 + αs
1 + i1 . . . 1 + is

]
fζ

= (Enm ◦ ∇
[
1 + α1 . . . 1 + αs
1 + i1 . . . 1 + is

]
◦ Fix)fζ

= (Enm ◦ ∇
[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
◦ Fix)fζ

= Enm((∇
[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)(Fixf))ζ

= (∇
[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)(Fixf))1+ζ0

If f = α 7→ ωα, then Fix f = Next and

12

f

(
ζ 1 + α1 . . . 1 + αs
0 1 + i1 . . . 1 + is

)
= (∇

[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)Next)1+ζ0

Examples :

ϕ(1 + β, α)

= (ξ 7→ ωξ)

(
α 1 + β
0 1

)
= ((∇

[
β + 1

1

]
)(Fix(ξ 7→ ωξ)))1+α0

= ((∇
[
β + 1

1

]
)Next)1+α0

= ([0]βNext)1+α0

ϕ(1 + γ, 1 + β, α)

= (ξ 7→ ωξ)

(
α 1 + β 1 + γ
0 1 2

)
= ((∇

[
β + 1

1

]
◦ [0] ◦ ∇

[
γ + 1

2

]
)(Fix(ξ 7→ ωξ)))1+α0

= ((∇
[
β + 1

1

]
◦ [0] ◦ ∇

[
γ + 1

2

]
)Next)1+α0

= (([0]β ◦ [0] ◦ ([1][0])1+γ)Next)1+α0
= ([0]1+β(([1][0])1+γNext))1+α0
Compare with the previously found formula :
if γ > 0, ϕ(γ, β, α) = ([0]β(([1][0])γNext))1+α0
and note the ”round trip” 1 + γ → γ + 1→ 1 + γ.

ϕ(1 + δ, 1 + γ, 1 + β, α)

= (ξ 7→ ωξ)

(
α 1 + β 1 + γ 1 + δ
0 1 2 3

)
= ((∇

[
β + 1

1

]
◦ [0] ◦ ∇

[
γ + 1

2

]
◦ [0] ◦ ∇

[
δ + 1

3

]
)(Fix(ξ 7→ ωξ)))1+α0

= ((∇
[
β + 1

1

]
◦ [0] ◦ ∇

[
γ + 1

2

]
◦ [0] ◦ ∇

[
δ + 1

3

]
)Next)1+α0

= (([0]β ◦ [0] ◦ ([1][0])1+γ ◦ [0] ◦ ([1]2[0])1+δ)Next)1+α0
= ([0]1+β(([1][0])1+γ([0](([1]2[0])1+δNext))))1+α0
= ([0]1+β(([1][0])1+γ(([1]2[0])1+δNext)))1+α0
because [0] is absorbed by the following operator (see http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/FromBelow.pdf
p 33, 6.7)
Compare with the previously mentioned formula :
ϕ(δ, γ, β, α) = ([0]β(([1][0])γ(([1]2[0])δNext)))1+α0

The equality

(ξ 7→ ωξ)

(
ζ 1 + α1 . . . 1 + αs
0 1 + i1 . . . 1 + is

)
= (∇

[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)Next)1+ζ0

can be reformulated, distinguishing four cases :

• (ξ 7→ ωξ)

(
ζ
0

)
= ϕ(0, ζ) = ωζ

• (ξ 7→ ωξ)

(
ζ 1 + α
0 1

)
= ϕ(1 + α, ζ) = (∇

[
α+ 1

1

]
Next)1+ζ0 = ([0]αNext)1+ζ0

• (ξ 7→ ωξ)

(
ζ 1 + α1 1 + α2 . . . 1 + αs
0 1 1 + i2 . . . 1 + is

)
= ((∇

[
α1 + 1

1

]
◦ [0] ◦ ∇

(
α2 + 1
i2 + 1

)
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)Next)1+ζ0

13

= (([0]α1 ◦ [0] ◦ ([1]i2 [0])1+α2 ◦ [0] ◦ . . . ◦ [0] ◦ ([1]is [0])1+αs)Next)1+ζ0

= (([0]1+α1 ◦ ([1]i2 [0])1+α2 ◦ [0] ◦ . . . ◦ [0] ◦ ([1]is [0])1+αs)Next)1+ζ0

= (([0]1+α1 ◦ ([1]i2 [0])1+α2 ◦ . . . ◦ ([1]is [0])1+αs)Next)1+ζ0

The first separating [0] is combined with [0]α1 giving [0]1+α1 and the other are absorbed.

• (ξ 7→ ωξ)

(
ζ 1 + α1 . . . 1 + αs
0 1 + i1 . . . 1 + is

)
with i1 6= 0

= ((∇
[
α1 + 1
i1 + 1

]
◦ [0] ◦ . . . ◦ [0] ◦ ∇

[
αs + 1
is + 1

]
)Next)1+ζ0

= ((([1]i1 [0])1+α1 ◦ [0] ◦ . . . ◦ [0] ◦ ([1]is [0])1+αs)Next)1+ζ0

= ((([1]i1 [0])1+α1 ◦ . . . ◦ ([1]is [0])1+αs)Next)1+ζ0

The separating [0] are absorbed.

We can see that the third case is contained in the fourth one if we remove the restriction i1 6= 0 because if i1 = 0 we have
([1]i1 [0])1+α1 = [0]1+α1 like in the third case.

For more information concerning the correspondence between Simmons notation and Schütte Klammersymbols, see :
http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/FromBelow.pdf pages 28 - 34.

The Simmons notation can also be used to represent the notation going beyond Veblen functions that we saw previously.

As we saw previously, the large Veblen ordinal is the least fixed point of the function α 7→ ϕ(1α) or α 7→ (ξ 7→ ωξ)

(
1
α

)
. It is

Fix(α 7→ ϕ(1α))0 = Fix(α 7→ [1]α[0]Next 0)0 = [2][1][0]Next 0. The fixed points of this function are enumerated by the function
F, so we have LVO = F(0). More generally, the (1 + α-th fixed point of α 7→ ϕ(1α) is F (α) = ϕ+

1 (α) = ([2][1][0]Next)1+α0.
Then the fixed points of F = ϕ+

1 are enumerated by G = ϕ+
2 . The least fixed point of F is G(0) = ϕ+

2 (0) = Fix(α 7→
([2][1][0]Next)1+α0)0 = [0]([2][1][0]Next)0 (because of the absorbsion of ”1+”) and its (1 +α)-th fixed point is G(α) = ϕ+

2 (α) =
([0]([2][1][0]Next))1+α0.
Then the fixed points of G = ϕ+

2 are enumerated by H = ϕ+
3 . The least fixed point of H is H(0) = ϕ+

3 (0) = Fix(α 7→
([0]([2][1][0]Next)1+α0)0 = [0]([0]([2][1][0]Next))0 = [0]2([2][1][0]Next)0 and its (1 + α)-th fixed point is H(α) = ϕ+

3 (α) =
([0]2([2][1][0]Next))1+α0.
More generally, we have ϕ+

1+α(0) = [0]α([2][1][0]Next)0 and ϕ+
1+α(β) = ([0]α([2][1][0]Next))1+β0.

Then we generalize the function ϕ+ to any number of variables :
ϕ+(α, β) = ϕ+

α (β)
ϕ+(1, 0, 0) is the least fixed point of the function α 7→ ϕ+(α, 0) = α 7→ [0]α([2][1][0]Next)0. It is Fix(α 7→ [0]α([2][1][0]Next)0)0 =
[1][0]([2][1][0]Next)0.
Compare with ϕ(1, 0, 0) = [1][0]Next0.
More generally, like we found ϕ(γ, β, α) = ([0]β(([1][0])γNext))1+α0, we have ϕ+(γ, β, α) = ([0]β(([1][0])γ([2][1][0]Next)))1+α0.
Like we generalized the ϕ function to transfinitely many variables reaching all ordinals less than LV O = [2][1][0]Next 0, we
can generalize the ϕ+ function to transfinitely many variables and reach all ordinals less than a new limit which we will call
LV O+ = [2][1][0]([2][1][0]Next)0 which is the least fixed point of α 7→ [1]α[0]([2][1][0]Next)0.
Then we can do the same with ϕ++ = Φ2 and we shall get similar results with ([2][1][0])2Next, and generally with Φα, getting
formulas with ([2][1][0])αNext.

The limit of Next 0, [0] Next 0, [1] [0] Next 0, [2] [1] [0] Next 0, [3] [2] [1] [0] Next 0, ...
or Next ω, [0]Next ω, [1][0]Next ω, [2][1][0]Next ω, [3][2][1][0]Next ω, . . .
is called the Bachmann-Howard ordinal (BHO).
It could be written [ω . . . 0]Next 0 or [ω . . . 0]Next ω.

6 Rationalization of the Veblen functions

When we have defined the different notations, we have arbitrarily chosen some conventions, for example the limit of ω, ωω, ωω
ω

, . . .
have been called ε0. We could have called it ε1. In this case, εα would have been the α-th fixed point of ξ 7→ ωξ instead of the
the (1 +α)-th one. Also we chose to define ϕ(0, α) = ωα. We could have chosen to define ϕ(0, α) = εα. The ”1+” which appear
in the correspondence between Simmons and Veblen notations may be due to the fact that the choices that have been made are
not the most logical.
We will define a rationalized variant of the Veblen notations which simplifies the correspondence with the Simmons notation :

14

• εα = ϕ(1, α) = ε′1+α = ϕ′(0, 1 + α)

• ζα = ϕ(2, α) = ζ ′1+α = ϕ′(1, 1 + α)

• ηα = ϕ(3, α) = η′1+α = ϕ′(2, 1 + α)

• Generally, ϕ(1 + β, α) = ϕ′(β, 1 + α)

• Γ0 = ϕ(1, 0, 0) = ϕ′(1, 0, 1)

• Generally, if γ 6= 0, ϕ(γ, β, α) = ϕ′(γ, β, 1 + α)

• In a similar way, if γ 6= 0 or δ 6= 0, ϕ(δ, γ, β, α) = ϕ′(δ, γ, β, 1 + α) and so on.

With this notation, the correspondence with Simmons notation becomes simpler, for example we have :

• ε′α = Nextα0 instead of εα = Next1+α0

• ϕ′(β, α) = ([0]βNext)α0 instead of ϕ(1 + β, α) = ([0]βNext)1+α0

• ϕ′(γ, β, α) = ([0]β(([1][0])γNext))α0 instead of ϕ(γ, β, α) = ([0]β(([1][0])γNext))1+α0

• ϕ′(δ, γ, β, α) = ([0]β(([1][0])γ(([1]2[0])δNext)))1+α0 instead of ϕ(δ, γ, β, α) = ([0]β(([1][0])γ(([1]2[0])δNext)))1+α0

It appears that the last variable (α in the previous examples) plays a different role from the other variables, so it could be more
logical to write for example ϕ′δ,γ,β(α) instead of ϕ′(δ, γ, β, α) and to consider that β is at position 0, γ at position 1 and δ at
position 2. In this case, we see that the position corresponds to the exponent of [1] in the Simmons representation.
We can also use collapsing to represent the index list, writing for example :

• Γ0 = ϕ′1,0(1) = ϕ′Ω(1)

• Ackermann ordinal = ϕ′1,0,0(1) = ϕ′Ω2(1)

• SV O = ϕ′Ωω (1)

This notation even permits writing ordinals that are out of range of Veblen notation like :

• LV O = ϕ′ΩΩ(1)

• ϕ′
ΩΩΩ (1)

• . . .

7 RHS0 notation

7.1 Basic principles

Like Simmons notation, the RHS0 notation uses lambda calculus formalism.
The basic method consists in :

• Start from 0

• If we don’t see any regularity, take the successor (add 1)

• If we see a regularity and we don’t have a notation for it, invent it and jump to the limit

• If we see a regularity and we already have a notation for it, use it and jump to the limit.

The difficulty, which requires intelligence, is to see the regularities. It gives the following sequence :

• 0 : no regularity, take the successor

• suc 0 : no regularity, take the successor

• suc(suc 0) : regularity : suc repeatedly applied to 0. No notation, invent it : H f x = limit of x, f x, f (f x), ...

• Hsuc 0 : no regularity, take the successor

• suc(Hsuc 0) : no regularity, take the successor

• suc(suc(Hsuc 0)) : regularity : suc repeatedly applied to H suc 0, notation exists

• Hsuc(Hsuc 0) : regularity : H suc repeatedly applied to 0, notation exists

15

• H(Hsuc)0 : regularity : H repeatedly applied to suc, notation exists

• HHsuc 0 : regularity (suc 0, ..., H suc 0, ... H H suc 0, ... H H H suc 0, ...), invent notation R1Hsuc 0 for the limit of this
sequence

• R1Hsuc 0 : no regularity, take the successor

• suc(R1Hsuc 0)

• suc(suc(R1Hsuc 0))

• Hsuc(R1Hsuc 0)

• suc(Hsuc(R1Hsuc 0))

• suc(suc(Hsuc(R1Hsuc 0)))

• Hsuc(Hsuc(R1Hsuc 0))

• H(Hsuc)(R1Hsuc 0)

• HHsuc(R1Hsuc 0)

• R1Hsuc(R1Hsuc 0)

• H(R1Hsuc)0

• suc(H(R1Hsuc)0)

• suc(suc(H(R1Hsuc)0))

• Hsuc(H(R1Hsuc)0)

• suc(suc(Hsuc(H(R1Hsuc)0)))

• Hsuc(Hsuc(H(R1Hsuc)0)))

• H(Hsuc)(H(R1Hsuc)0)

• HHsuc(H(R1Hsuc)0)

• R1Hsuc(H(R1Hsuc)0)

• suc(R1Hsuc(H(R1Hsuc)0))

• suc(suc(R1Hsuc(H(R1Hsuc)0)))

• Hsuc(R1Hsuc(H(R1Hsuc)0))

• suc(Hsuc(R1Hsuc(H(R1Hsuc)0)))

• suc(suc(Hsuc(R1Hsuc(H(R1Hsuc)0))))

• Hsuc(Hsuc(R1Hsuc(H(R1Hsuc)0)))

• H(Hsuc)(R1Hsuc(H(R1Hsuc)0))

• HHsuc(R1Hsuc(H(R1Hsuc)0))

• R1Hsuc(R1Hsuc(H(R1Hsuc)0))

• H(R1Hsuc)(H(R1Hsuc)0)

• H(H(R1Hsuc))0

• HH(R1Hsuc)0

• R1H(R1Hsuc)0

• H(R1H)suc 0

• ...
• R1H(R1H)suc 0

• R1(R1H)suc 0

• HR1Hsuc 0

• ...
• R1HR1Hsuc 0 : invent notation R2R1Hsuc 0 = limit of suc 0, R1Hsuc 0, R1HR1Hsuc 0, ...

• ...
• R3R2R1Hsuc 0 : invent notation R3...1Hsuc 0 and jump to limit

• Rω...1Hsuc 0

• ...
• R2Rω...1Hsuc 0 : invent notation Rω+1...1Hsuc 0

• ...

To progress faster, we can use the following rule :
If we have found an ordinal α, and later another ordinal β of the form f(s(sz)), we may produce an ordinal γ = f([suc→ s, 0→
z]α) where [suc→ s, 0→ z]α means the expression obtained by replacing suc by s and 0 by z in α.
For example :

16

• α = R1Hsuc 0

• β = R1H(R1Hsuc)0

• s = R1H

• z = suc

• fx = x 0

• [suc→ R1H, 0→ suc]α = R1H(R1H)suc

• γ = f([suc→ R1H, 0→ suc]α) = R1H(R1H)suc 0

With the following rules :

• 0 :→ 0

• suc : x→ suc x

• H : f(fx)− > Hfx

• R1 : ff− > R1f

• R2 : fgfg− > R2fg

• R3 : fghfgh− > R3fgh

• ...

• Repl : α, f(s(sz))→ f([suc→ s, 0→ z]α)

we can produce the following sequence of ordinals :

• 0 : 0 : 0

• 1 : suc 0 : suc 0

• 2 : suc 1 : suc (suc 0)

• 3 : H2 : Hsuc 0

• 4 : suc 3 : suc (Hsuc 0)

• 5 : suc 4 : suc (suc (Hsuc 0))

• 6 : H5 : Hsuc (Hsuc 0)

• 7 : H6 : H(Hsuc)0

• 8 : H7 : HHsuc 0

• 9 : R18 : R1Hsuc 0

• 10 : suc 9 : suc (R1Hsuc 0)

• 11 : suc 10 : suc (suc (R1Hsuc 0))

• 12 : Repl 9 11[suc− > suc, 0− > R1Hsuc 0] : R1Hsuc (R1Hsuc 0)

• 13 : Repl 9 12[suc− > R1Hsuc, 0− > 0] : R1H(R1Hsuc)0

• 14 : Repl 9 13[suc− > R1H, 0− > suc] : R1H(R1H)suc 0

• 15 : R114 : R1(R1H)suc 0

• 16 : Repl 9 15[suc− > R1, 0− > H] : R1HR1Hsuc 0

• 17 : R216 : R2R1Hsuc 0

The rules R1, R2, R3, ... may be replaced by H or Repl if f1 ... fn ... f1 ... fn is reformulated in< f1, ..., fn > (...(< f1, ..., fn > I)...)
with < f1, ..., fn > g = g f1...fn :

• 0 : 0 : 0

• 1 : suc 0 : suc 0

• 2 : suc 1 : suc (suc 0)

• 3 : H 2 : H suc 0

• 4 : suc 3 : suc (H suc 0)

• 5 : suc 4 : suc (suc (H suc 0))

• 6 : Repl 3 5 [suc->suc,0->H suc 0] : H suc (H suc 0)

• 7 : Repl 3 6 [suc->H suc,0->0] : H (H suc) 0

• 8 : Repl 3 7 [suc->H,0->suc] : H H suc 0 = <H> (<H> I) suc 0

• 9 : Repl 3 8 [suc-><H>,0->I] : H <H> I suc 0

• 10 : suc 9 : suc (H <H> I suc 0)

• 11 : suc 10 : suc (suc (H <H> I suc 0))

17

• 12 : Repl 9 10 [suc->suc,0->H <H> I suc 0] : H <H> I suc (H <H> I suc 0)

• 13 : Repl 9 12 [suc->H <H>: I suc,0->0] : H <H> I (H <H> I suc) 0

• 14 : Repl 9 13 [suc->H <H> I,0->suc] : H <H> I (H <H> I) suc 0 = <H <H> I> (<H <H> I> I) suc 0

• 15 : Repl 3 14 [suc-><H <H> I>,0->I] : H <H <H> I> I suc 0 = [H <*> I] ([H <*> I] H) suc 0

• 16 : Repl 9 15 [suc->[H <*> I],0->H] : H <H> I [H <*> I] H suc 0

• = [H <*> I] H [H <*> I] H suc 0 = <[H <*> I],H> (<[H <*> I], H> I) suc 0

• 17 : Repl 3 16 [suc-><[H <*> I],H>,0->I] : H <[H <*> I], H> I suc 0

More formally, the RHS0 notation uses lambda calculus with De Bruijn indexes. λ.x is written [x] and variables are written *,
, *..., or •, ••, • • •, ... for example [... * ...] = [... • ...] = λx(...x...)

CI = C I is defined by CI x f = f x.

CI x = <x>

<x1,...,xn> f = f x1 ... xn

tuple n f x1 ... xn = f <x1,...,xn>

tuple 0 = <I>

tuple (n+1) f x = tuple n [f (insert x *)]

with insert x a f = a (f x)

r 0 f x = x

r (n+1) f x = f (r n f x)

r (lim g) f x = lim [r * f x]

H f x represents the limit of x, f x, f (f x), ...

H f x = r w f x

R1 = [H < • > I] = tuple 1[H • I]
R2 = [[H < ••, • > I]] = tuple 2[H • I]
R3 = [[[H < • • •, ••, • > I]]] = tuple 3[H • I]
Rn = tuple n[H • I]
Rn...1 = Rn . . . R1

Sn...1 = [S•...1]n =< Rn, ..., R1 >
Rn...1 = Sn...1I
[S•...1]0 = I
[S•...1](n+ 1) = insert(tuple(n+ 1)[H • I])([S•...1]n)

L f = lim f 0, f 1, ...

L f x = L [f * x]

H = [[L [r * *** **]]]

or

L0 = lim f 0, f 1, ...

L n f = tuple n [L0 [** (f *)]]

L n = [tuple n [L0 [** (*** *)]]]

L = [[tuple ** [L0 [** (*** *)]]]

= \n \f (tuple n \a (L0 \i (a (f i))))

To represent the replacement [suc → s, 0 → z] we can represent ordinals by ordinal functions which, when applied to suc and
0, give the considered ordinal. For example, R1Hsuc 0 is represented by the ordinal function s 7→ z 7→ R1Hsz,R1H(R1Hsuc)0
by s 7→ z 7→ R1H(R1Hs)z. From these ordinals, with the replacement [suc → R1H, 0 → suc] we can produce a new ordinal
represented by s 7→ z 7→ ((s 7→ z 7→ R1Hsz)(R1H)sz) = s 7→ z 7→ R1H(R1H)sz) which, when applied to suc and 0, gives
R1H(R1H)suc 0.
Operations can be represented with replacements :

• α+ β = [0→ α]β

18

• α · β = [suc→ [•+ α]]β = [suc− > [[0→ ••]α]]β

• αβ = [suc→ [• · α], 0→ 1]β = [suc→ [[suc→ [[0→ ••] • ••]]α], 0→ suc 0]β

• ωα = [suc→ [suc→ Hsuc], 0→ suc 0]α = [suc→ H, 0→ suc]α 0

• ε0
α = [suc→ R1H, 0→ suc]α0

• εa = [suc→ R1, 0→ H](1 + α)suc 0; 1 + α = [0→ suc 0]α

7.2 Correspondence with other notations

• suc 0 = 0 + 1 = 1

• suc (suc 0) = 1 + 1 = 2

• Hsuc 0 = ω

• suc (Hsuc 0) = ω + 1

• Hsuc (H suc 0) = ω + ω = ω · 2
• H(Hsuc) 0 = ω · ω = ω2

• HHsuc 0 = ωω

• R1Hsuc 0 = limit of suc 0, Hsuc 0, HHsuc 0, HHHsuc 0, . . . = ε0 = ϕ(1, 0) = ϕ′(0, 1) = Next ω

• suc(R1Hsuc 0) = ε0 + 1

• R1Hsuc(R1Hsuc 0) = ε0 + ε0 = ε0 · 2
• R1H(R1Hsuc)0 = ε0 · ε0 = ε0

2

• R1H(R1H)suc 0 = ε0
ε0

• R1H(R1H)(R1H)suc 0) = ε0
ε0
ε0

• R1(R1H)suc 0 = ε1 = ϕ(1, 1) = ϕ′(0, 2) = Next(Next ω) (note again that the correspondence is clearer with the
rationalized function ϕ′

We have previously seen that ε1 is the limit of ε0, ε0
ε0 , ε0

ε0
ε0
, . . . and is also the limit of ε0 + 1, ωε0+1, ωω

ε0+1

, . . . and we have
proved the equivalence of these two fundamental sequences. We have seen that the first fundamental sequence is equivalent to
ω, ε0

ω, ε0
ε0
ω

, . . ., so we proved the equivalence of the two fundamental sequences by proving that for any n, we have :

ωω
...

ωω
ε0+1

= ε
ε

...

ε0
ω

0
0

We will now see how we can prove it using RHS0 notation.
First we will write the two sides of this equality using RHS0 notation :
We will use the notation X . . .X for X repeated n times.

• ε0 = R1Hsuc 0

• ε0 + 1 = suc(R1Hsuc 0)

• ωε0+1 = [suc→ H, 0→ suc](suc(R1Hsuc0))0 = H(R1HHsuc)0 = H(R1Hsuc)0

• ωωε0+1

= H(R1HH)suc 0 = H(R1H)suc 0

• ωωω
ε0+1

= H(R1H)Hsuc 0

• ωωω
ωε0+1

= H(R1H)HHsuc 0

• . . .

• ωω
...

ωω
ε0

= H(R1H)H . . .Hsuc 0

• ω = Hsuc 0

• εω0 = [suc→ R1H, 0→ suc]ω0 = H(R1H)suc 0

• εε
ω
0

0 = H(R1H)(R1H)suc 0

• εε
εω0
0

0 = H(R1H)(R1H)(R1H)suc 0

• . . .

• εε
...

ε0
ω

0
0 = H(R1H) . . . (R1H)(R1H)suc 0

We will now prove the equality H(R1H)H . . .Hsuc 0 = H(R1H) . . . (R1H)(R1H)suc 0 for any n by induction.

19

For n = 0, the equality is trivial : H(R1H)suc 0 = H(R1H)suc 0.

We will now suppose H(R1H)H . . .Hsuc 0 = H(R1H) . . . (R1H)(R1H)suc 0 for a given n and prove it for n + 1 :
H(R1H)H . . .HHsuc 0 = H(R1H) . . . (R1H)(R1H)(R1H)suc 0

By elevating ω at the power of each side of this equality, we get :
[suc→ H, 0→ suc](H(R1H)H . . .Hsuc 0)0 = [suc→ H, 0→ suc](H(R1H) . . . (R1H)(R1H)suc 0)0
(1) H(R1H)H . . .HHsuc 0 = H(R1H) . . . (R1H)(R1H)Hsuc 0

We also have :
H(R1H) . . . (R1H)suc 0 = H(R1H) . . . (R1H)suc(suc 0)
which corresponds to the RHS0 notation for :

ε
...

ε0
ω

0 = 1 + ε
...

ε0
ω

0

by absorpsion of ”1+” and ”suc”.
Now we elevate ε0 to the power of each side of this equality, which gives :
[suc→ R1H, 0→ suc](H(R1H) . . . (R1H)suc 0)0 = [suc→ R1H, 0→ suc](H(R1H) . . . (R1H)suc(suc 0))0
H(R1H) . . . (R1H)(R1H)suc 0 = H(R1H) . . . (R1H)(R1H)(R1Hsuc)0
Then we elevate ω to the power of each side of this equality :
[suc→ H, 0→ suc](H(R1H) . . . (R1H)(R1H)suc 0)0 = [suc→ H, 0→ suc](H(R1H) . . . (R1H)(R1H)(R1Hsuc)0)0
H(R1H) . . . (R1H)(R1H)Hsuc 0 = H(R1H) . . . (R1H)(R1H)(R1HH)suc 0
which can be simplified to :
H(R1H) . . . (R1H)(R1H)Hsuc 0 = H(R1H) . . . (R1H)(R1H)(R1H)suc 0
Noting that the left side of this last equality is the same as the right side of (1), we get by transitivity of equality, equating the
left side of (1) with the right side of the last equality :
H(R1H)H . . .HHsuc 0 = H(R1H) . . . (R1H)(R1H)(R1H)suc 0
which corresponds to the equality we wanted to prove for n+1.

Then the correspondence continues with :

• R1(R1(R1H))suc 0 = ε2 = ϕ(1, 2) = ϕ′(0, 3) = Next(Next(Next ω))

• HR1Hsuc 0 = εω = ϕ(1, ω) = ϕ′(0, ω) = Nextωω

• R1HR1Hsuc 0 = εε0
• R1HR1HR1Hsuc 0 = εεε0
• R2R1Hsuc 0 = ζ0 = ϕ(2, 0) = ϕ′(1, 1) = [0]Next ω

The next step is ζ1 which is the next fixed point of the function α 7→ εα, the limit of ζ0 + 1, εζ0+1, εεζ0+1
, εα is [suc →

R1, 0→ H](1 + α)suc 0, or [suc→ R1, 0→ H]α suc 0 if α ≥ ω by absorbsion of ”1+”. This is the result of replacing suc by R1

and 0 by H in α and applying the result to suc and 0. So by iterating this transformation we get that ζ1 is the limit of :

• ζ0 + 1 = suc(R2R1Hsuc 0)

• R1(R2R1HR1H)suc 0 = R1(R2R1H)suc 0

• R1(R2R1H)R1Hsuc 0

• R1(R2R1H)R1HR1Hsuc 0

• . . .

In the previous correnspondence formulas, we can see a correspondence between RHS0 and Simmons notations :

• R2 ↔ [0]

• R1 ↔ Next

• H ↔ ω

• suc 0 at the end of the RHS0 notation

If we apply this correspondence to ζ1 = [0]Next([0]Next ω) (see ”Simmons notation / Correspondence with Veblen functions”)
we get ζ1 = R2R1(R2R1H)suc 0.

This is the limit of :

20

• R1(R2R1H)suc 0

• R1(R2R1H)R1(R2R1H)suc 0

• R1(R2R1H)R1(R2R1H)R1(R2R1H)suc 0

• . . .

Compare with what we found previously :

• ζ0 + 1 = suc(R2R1Hsuc 0)

• R1(R2R1HR1H)suc 0 = R1(R2R1H)suc 0

• R1(R2R1H)R1Hsuc0

• R1(R2R1H)R1HR1Hsuc0

• . . .

and with the previously proven equality :
H(R1H)H . . .Hsuc 0 = H(R1H) . . . (R1H)(R1H)suc 0
which could also be written :
H(R1H)H . . .Hsuc 0 = H(R1H)(R1H) . . . (R1H)suc 0
There is probably a similar equality :
R1(R2R2H)R1H . . . R1Hsuc 0 = R1(R2R1H)R1(R2R1H) . . . R1(R2R1H)suc 0
which would prove the equivalence of the two fundamental sequences.

So we can go on with our correspondences :

• R2R1(R2R1H)suc 0 = ζ1 = ϕ(2, 1) = ϕ′(1, 2) = [0]Next([0]Next ω)

• H(R2R1)Hsuc 0 = ζω
• R2R1H(R2R1)Hsuc 0 = ζζ0
• R2(R2R1)Hsuc 0 = η0 = ϕ(3, 0) = ϕ′(2, 1) = [0]([0]Next)ω

• HR2R1Hsuc 0 = ϕ(ω, 0) = ϕ′(ω, 1)

• R1HR2R1Hsuc 0 = ϕ(ε0, 0) = ϕ(ϕ(1, 0), 0) = ϕ′(ε0, 1) = ϕ′(ϕ′(0, 1), 1)

• R2R1HR2R1Hsuc 0 = ϕ(ζ0, 0) = ϕ(ϕ(2, 0), 0) = ϕ′(ζ0, 1) = ϕ′(ϕ′(1, 1), 1)

• R3R2R1Hsuc 0 = Γ0 = ϕ(1, 0, 0) = ϕ′(1, 0, 1) = [1][0]Next ω

We may then extend our correspondence rule :

• R3 ↔ [1]

• R2 ↔ [0]

• R1 ↔ Next

• H ↔ ω

• suc 0 at the end of the RHS0 notation

It is likely that this correspondence can be generalized in a simple and logical way, and it seems to me that the simpler
generalization is :

• Rn+2 ↔ [n]

• R1 ↔ Next

• H ↔ ω

• suc 0 at the end of the RHS0 notation

I will call it the ”Simmons - RHS0 correspondence conjecture”.

Then, if the correspondence conjecture is true, the correspondence goes on with :

• R3R2R1Hsuc 0 = Γ0 = ϕ(1, 0, 0) = ϕ′(1, 0, 1) = [1][0]Next ω

• R3(R3R2)R1Hsuc 0 = ϕ(1, 0, 0, 0) = ϕ′(1, 0, 0, 1) = [1]([1][0])Next 0 (Note that in the ϕ and ϕ′ functions, the last variable
plays a different role than the others, as mentioned previously, so the most logical representation should probably be
ϕ′1,0,0(1) where the first 1 should be considered at position 2 and not 3, in this case its position corresponds to the number
of occurences (or the exponent) of R3 and [1])

21

• HR3R2R1Hsuc 0 = SV O = [1]ω[0]Next ω

• R4R3R2R1Hsuc 0 = LV O = [2][1][0]Next ω

• Rω...1Hsuc 0 = BHO

• . . .

Note the importance of using logical notations to make correct conjectures : if, instead of ϕ′, we use the less logical function ϕ,
we have the correspondence :

• R1Hsuc 0 = ε0 = ϕ(1, 0)

• R2R1Hsuc 0 = ζ0 = ϕ(2, 0)

and we could think that it continues with :

• R3R2R1Hsuc 0 = η0 = ϕ(3, 0)

• Rω...1Hsuc 0 = ϕ(ω, 0)

7.3 Going further with RHS0 notation and collapsing

The Bachmann-Howard ordinal (BHO) is the limit ofR1Hsuc 0, R2R1Hsuc 0, R3R2R1Hsuc 0, . . . which we will writeRω...1Hsuc 0.
We can go on ascending ordinals after BHO :

• BHO = Rω...1Hsuc 0

• suc(Rω...1Hsuc 0)

• Rω...1Hsuc (Rω...1Hsuc 0)

• Rω...1H(Rω...1Hsuc)0

• Rω...1H(Rω...1H)suc 0

• R1(Rω...1H)suc 0

• Rω...1(Rω...1H)suc 0

• HRω...1Hsuc 0

• R2Rω...1Hsuc 0

• R3R2Rω...1Hsuc 0

• Rω...2Rω...1Hsuc 0 which we will write Rω·2...1Hsuc 0

• Rω...3Rω...2Rω...1Hsuc 0 which we will write Rω·3...1Hsuc 0

• Rω2...1Hsuc 0

• Rε0...1Hsuc 0 = RR1Hsuc 0...1Hsuc 0

Then we can take the least fixed point of the function α 7→ Rα...1Hsuc 0 which we can also write [R•...1Hsuc 0]. This fixed point
is H[R•...1Hsuc 0]0 which we may also write R1

1Hsuc 0 if we define R1
1x1x2x3 = H[R•...1x1x2x3]0. Then the ascension goes on

with :

• H[R•...1Hsuc 0]0 = R1
1Hsuc 0

• R2R
1
1Hsuc 0

• R3R2R
1
1Hsuc 0

• Rω...2R1
1Hsuc 0

• H[R•...2R
1
1Hsuc 0]0 = R1

2R
1
1Hsuc 0 = R1

2...1Hsuc 0 with R1
2x1x2x3x4 = H[R•...2x1x2x3x4]0

• R1
3R

1
2R

1
1Hsuc 0 = R1

3...1Hsuc 0

• R1
ω...1Hsuc 0

• H[R1
•...1Hsuc 0]0 = R2

1Hsuc 0 with R2
1x1x2x3 = H[R1

•...1x1x2x3]0

• R3
1Hsuc 0

• Rω1Hsuc 0

• H[R•1Hsuc 0]0 = R1,0
1 Hsuc 0 with R1,0

1 x1x2x3 = H[R•1x1x2x3]0

• R1,0,0
1 Hsuc 0

We can number the positions in the list of upper indices of R or introduce collapsing to write

• R1
1 = R10

1 = R0:1
1

22

• R1,0
1 = R11

1 = R1:1
1 = RΩ

1

• R1,0,0
1 = R12

1 = R2:1
1 = RΩ2

1

• . . .

We also need a notation for uncountable ordinals. We can take Ω = ω1 the least uncountable ordinal and use a notation similar
to the one we used for countable ordinals, replacing H by H1 when ω is replaced by Ω = ω1, writing for example :

• Ω = ω1 = H1suc 0

• Ω2 = H1(H1suc)0

• Ωω = HH1suc 0

• ΩΩ = H1H1suc 0

• ΩΩΩ

= H1H1H1suc 0

• . . .

Then we can go on ascending ordinals by using greater and greater uncountable ordinals as upper indices of R, for example :

R
H[R•

1H1suc 0]0
1 Hsuc 0

Because of the correspondence between RHS0 and Simmons notations, we could probably do something similar with Simmons
notation.

8 Ordinal collapsing functions

An ordinal collapsing function is a function which, when applied to an uncountable ordinal, gives a countable ordinal.
The general idea is to define a set of ordinals C(a) or C(a,b) where a and b are ordinals, which contains all ordinals that can
be built using an initial set of ordinals and some operations or functions, and then define ψ(a) or ψ(a, b) as the smallest ordinal
which is not in C(a) or C(a,b), or the least ordinal which is greater than than all countable ordinals of C(a) or C(a,b).
Different ordinal collapsing functions are described in http://googology.wikia.com/wiki/Ordinal notation .
These functions are extensions of functions on countable ordinals, whose fixed points can be reached by applying them to an
uncountable ordinal.
Here is a correspondence between basic notation systems and their collapsing extensions based on formula : least fixed point of
f = f(Ω) :

Basic notation Formula Limit Extension Correspondence Crossing
Cantor cantor(α, β) least α = cantor(α, 0) Taranovsky’s C C(α, β) = β + ωα C(Ω, 0) = ε0

= β + ωα = ωα = ε0 iff C(α, β) ≥ α
Epsilon εα least α = εα Madore’s ψ ψ(α) = εα ψ(Ω) = ζ0

= ζ0 for all α < ζ0
Binary Veblen ϕα(β) least α = ϕ(α, 0) θ θ(α, β) = ϕ(α, β) θ(Ω, 0) = Γ0

or ϕ(α, β) = Γ0 below Γ0

8.1 Madore’s ψ

This ordinal collapsing function is described in https://en.wikipedia.org/wiki/Ordinal collapsing function and http://quibb.blogspot.fr/2012/03/infinity-
impredicative-ordinals.html .
The definition of this function uses the ordinal Ω which is the least uncountable ordinal.
C(α) is the set of all ordinals constructible using only 0, 1, ω,Ω and addition, multiplication, exponentiation, and the function ψ
(which will be defined later) restricted to ordinals smaller than α.
ψ(α) is the smallest ordinal not in C(α).
The smallest ordinal not in C(0) is the limit of ω, ωω, ωω

ω

, . . . which is ε0, so ψ(0) = ε0. More generally, ψ(α) = εα for all
α < ζ0, ψ(α) = ζ0 for ζ0 ≤ a ≤ Ω, and ψ(Ω + α) = ε(ζ0 + α) for α <= ζ1.
Note that ψ(Ω) = ζ0 is the least fixed point of α 7→ εα; we already saw such an equality when we introdiced collapsing in the
Veblen function.
The limit ψ(ε(Ω + 1)) of ψ(Ω), ψ(ΩΩ), ψ(ΩΩΩ

), . . . is the Bachmann-Howard ordinal.
Some examples of fundamental sequences (FS) are :
A FS of ω is 0, 1, 2, 3, ...
A FS of ψ(0) is ω, ωω, ωω

ω

,

23

A FS of ψ(α+ 1) is ψ(α), ψ(α)ψ(α), ψ(α)ψ(α)ψ(α)

,
A FS of ψ(f(Ω)) is ψ(0), ψ(f(ψ(0))), ψ(f(ψ(f(ψ(0))))),
For example :
A FS of ψ(Ω) is ψ(0), ψ(ψ(0)), ψ(ψ(ψ(0))),
A FS of ψ(Ω · 2) is ψ(0), ψ(Ω + ψ(0)), ψ(Ω + ψ(Ω + ψ(0))),

A FS of ψ(ΩΩ · 3) is ψ(0), ψ(ΩΩ · 2 + Ωψ(0)), ψ(ΩΩ · 2 + ΩΩΩ·2+Ωψ(0)

), · · ·.

8.2 Correspondence between Veblen functions and Madore’s ψ

To distinguish between the different Veblen functions, let us call ϕF the Veblen function with finitely many variables, and ϕT
the Veblen function with transfinitely many variables.
ϕF is a function which, when applied to a list of countable ordinals, gives a countable ordinal. A list of countable ordinals can
be seen as a function which, when applied to a natural number, gives a countable ordinal, with the restriction that the result
differs from 0 for finitely many integers. If we denote ω the set of natural numbers and Ω the set of countable ordinals, then this
can be written : ϕF : (ω → Ω)→ Ω. If we replace α→ β by βα, we get ΩΩω , and if we apply ψ to it, we get ψ(ΩΩω), which is
the small Veblen ordinal, the least ordinal that cannot be reached using ϕF .
For ϕT , the position of a variable is represented by a countable ordinal instead of a natural number, also with the restriction
that finitely many variables differ from 0, so we have ϕT : (Ω → Ω) → Ω. If we replace α → β by βα, we get ΩΩΩ

, and if we

apply ψ to it, we get ψ(ΩΩΩ

), which is the large Veblen ordinal, the least ordinal that cannot be reached using ϕT .

8.3 θ function

θ function is a binary function. It’s defined as follows:

• C0(α, β) = {γ|γ < β} ∪ {0}.

• Cn+1(α, β) = {γ + δ|γ, δ ∈ Cn(α, β)} ∪ {θ(γ, δ)|γ < α&γ, δ ∈ Cn(α, β)} ∪ {Ωc|c ∈ Cn(α, β)}.

• C(α, β) = ∪n<ωCn(α, β)

• θ(α, β) = min{c| (c ∈ C(α, γ)&(∀δ < β : γ > θ(α, δ))}
where Ω0 = 0 and Ωa represents the a-th uncountable ordinal.

It means that θ(α, β) is the (1+β)-th ordinal such that it cannot be built from ordinals less than it by addition, applying θ(δ, . . .)
where δ < α and getting an uncountable cardinal.
It seems that θ(α, β) = ϕ(α, β) below Γ0, making θ function an extension of ϕ function. Even θ(Γ0, β) = ϕ(Γ0, β) is true.

Other important values are :

• θ(Ω, α) = Γα

• θ(Ωω, 0) = small Veblen ordinal

• θ(ΩΩ, 0) = large Veblen ordinal

• θ(εΩ+1, 0) = Bachmann Howard ordinal

See https://stepstowardinfinity.wordpress.com/2015/05/04/ordinal2/ for more information.

8.4 Taranovsky’s C

C(a,b) is the least element above b that has degree a.
Definition: A degree for a well-ordered set S is a binary relation on S such that :

• Every element c ∈ S has degree 0S (the least element of S). 0S only has degree 0S .

• For a limit a, c has degree a iff it has every degree less than a.

• For a successor a’=a+1, either of the following holds:

– An element has degree a’ iff it is a limit of elements of degree a.

24

– There is a limit element d ¡= a such that for every c in S, c has degree a’ iff it has degree a and either c ¡= d or c is
a limit of elements of degree a (or both).

Note: The third condition can be equivalently written as ∀a(Ca+1 = lim(Ca)∨∃d ∈ lim(S)∩(a+1)Ca+1 = lim(Ca)∪(Ca∩(d+1))),
where S is identified with an ordinal (so a+1 consists of ordinals ≤ a), Ca is the set of elements that have degree a, and lim is
limit points.
In other terms : Let η be an ordinal, and let 0S and let Ld(a,b) be the statement that a is a limit of ordinals c such that
(c, b) ∈ D. Let D be the following binary relation over η :

• ∀a < η : (a, 0) ∈ D

• ∀a < η : a 6= 0⇒ (0, a) /∈ D

• ∀b ∈ Lim ∪ η : (a, b) ∈ D ⇔ ∀c < b : (a, c) ∈ D

• ∀b : (a, b) ∈ D ⇔ Ld(a, b+ 1)∀b : (a, b) ∈ D ⇔ Ld(a, b+ 1)

• ∀b : ∃d ∈ Lim ∪ η : d <= b⇒ ∀c : (c, a+ 1) ∈ D ⇔ (c <= d ∨ Ld(c, b))

Then C(a, b) = minc : c ∈ η ∧ c > b ∧ (c, a) ∈ D.
C(a, b) = b+ ωa iff C(a, b) ≥ a.
For ordinals in the standard representation written in the postfix form, the comparison is done in the lexicographical order
where ′C ′ <′ 0′ <′ Ω′: For example, C(C(0, 0), 0) < C(Ω, 0) because 000CC < 0ωC. (This does not hold for non-standard
representations of ordinals.)
The fundamental sequences of Taranovsky’s notation can be easily defined.
Let L(α) be the amount of C’s in standard representation of α, then α[n] = max{β|β < α ∧ L(β) ≤ L(α) + n}.
Here is a summary of the system by Taranovsky (see https://cs.nyu.edu/pipermail/fom/2012-March/016349.html) :

I discovered a conjectured ordinal notation system that I conjecture

reaches full second order arithmetic. I implemented the system in a

python module/program:

http://web.mit.edu/dmytro/www/other/OrdinalArithmetic.py

along with ordinal arithmetic operations (addition, multiplication,

exponentiation, etc.) and other functions. The ordinal arithmetic

functionality is useful even if you are only interested in ordinals

below epsilon_0.

The notation system is simple enough to be defined in full here.

Definition: An ordinal a is 0-built from below from b iff a<=b

a is n+1-built from below from b iff the standard representation of a

does not use ordinals above a except in the scope of an ordinal n-built

from below from b.

(Note: "in the scope of" means "as a subterm of".)

The nth (n is a positive integer) ordinal notation system is defined as

follows.

Syntax: Two constants (0, W_n) and a binary function C.

Comparison: For ordinals in the standard representation written in the

postfix form, the comparison is done in the lexicographical order where

’C’ < ’0’ < ’W_n’: For example, C(C(0,0),0) < C(W_n, 0) because 0 0 0 C

C < 0 W_n C.

Standard Form:

0, W_n are standard

"C(a, b)" is standard iff

25

1. "a" and "b" are standard,

2. b is 0 or W_n or "C(c, d)" with a<=c, and

3. a in n-built from below from b.

I conjecture that the strength of the nth ordinal notation system is

between Pi^1_{n-1}-CA and Pi^1_n-CA_0, and thus the sum of the order

types of these ordinal notation systems is the proof-theoretical ordinal

of second order arithmetic.

The full notation system is obtained by combining these notation systems

as follows:

Constants 0 and W_i (for every positive integer i), and a binary function C.

W_i = C(W_{i+1}, 0) and the standard form always uses W_i instead of

C(W_{i+1}, 0).

To check for standard form and compare ordinals use W_i = C(W_{i+1}, 0)

to convert each W to W_n for a single positive integer n (it does not

matter which n) and then use the nth ordinal notation system.

To make C a total function for a and b in the notation system (this is

not required for standard forms), let C(a, b) be the least ordinal (in

the notation system) of degree >=a above b, where the degree of W_i is

W_{i+1} and the degree of C(c,d) is c if "C(c,d)" is the standard form.

A polynomial time computation of C(a, b) (that I believe is correct) is

included in the program.

To complete ordinal analysis of second order arithmetic, one would need:

* A canonical assignment of notations to formulas that provably in

second order arithmetic denote an ordinal, and such that for every two

ordinals/formulas, comparison is provable in second order arithmetic.

The idea is that the notation system captures not only provably

recursive ordinals of second order arithmetic but all ordinals that have

a provable canonical definition in second order arithmetic. For

example, W_1 is best assigned to the least admissible ordinal above

omega. A partial assignment is in my paper. (It is because of such

assignment that I believe that the system reaches full second order

arithmetic.)

* Proof that the system is well-founded and that it has the right

strength, etc. (If you do not fully understand the notation system, or

if you think that it is not well-founded, let me know.)

Historical Note: In 2005, I discovered the right general form of C,

defined a notation system at the level of alpha-recursively inaccessible

ordinals (FOM postings in August 2005), and had an idea for reaching

second order arithmetic. In January 2006 (or possibly late 2005), I

defined the notation system with W_2 and in 2009 (June 29, 2009 FOM

posting) implemented it is a computer program. This year I defined the

key concept -- n-built from below -- that allowed me to complete the

full notation system.

Details about the ordinal notation system and its initial segments are

in my paper:

http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm

Sincerely,

Dmytro Taranovsky

26

Here are some examples of representations of some ordinals :

• 0 = 0

• 1 = 0 + ω0 = C(0, 0)

• 2 = 1 + ω0 = C(0, 1) = C(0, C(0, 0))

• ω = 0 + ω1 = C(1, 0)

• ω + 1 = ω + ω0 = C(0, ω) = C(0, C(1, 0))

• ω · 2 = ω + ω1 = C(1, ω) = C(1, C(1, 0))

• ω2 = 0 + ω2 = C(2, 0)

• ωω = 0 + ωω = C(ω, 0) = C(C(1, 0), 0)

• ωωω = 0 + ωω
ω

= C(ωω, 0) = C(C(C(1, 0), 0), 0)

• ε0 = ϕ(1, 0) = ϕ′(0, 1) = C(Ω1, 0)

• ε1 = ϕ(1, 1) = ϕ′(0, 2) = C(W,C(W, 0)) (note that the correspondence with ϕ′ is simpler than with ϕ)

• ζ0 = ϕ(2, 0) = ϕ′(1, 1) = C(C(Ω1,Ω1), 0) = C(Ω1 · 2, 0) with Ω1 · 2 = C(Ω1,Ω1)

• ζ1 = ϕ(2, 1) = ϕ′(1, 2) = C(Ω1 · 2, C(Ω1 · 2, 0))

• η0 = ϕ(3, 0) = ϕ′(2, 1) = C(Ω1 · 3, 0) with Ω1 · 3 = C(Ω1, C(Ω1,Ω))

• Γ0 = ϕ(1, 0, 0) = ϕ′(1, 0, 1) = C(C(Ω1 · 2,Ω1), 0) = C(Ω1
2, 0) with Ω1

2 = C(Ω1 · 2,Ω1)

• Γ1 = C(Ω1
2, C(Ω1

2, 0))

• Γω = C(Ω1
2 + 1, 0)

• Small Veblen ordinal = C(Ω1
ω, 0)

• Large Veblen ordinal = C(Ω1
Ω1 , 0)

• Bachmann Howard ordinal = C(C(Ω2,Ω1), 0)

See http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm and
https://stepstowardinfinity.wordpress.com/2015/06/22/ordinal3/ for more information.

9 Summary

Any ordinal can be defined as the least ordinal strictly greater than all ordinals of a set : the empty set for 0, {α} for the
successor of α, {α0, α1, α2, ...} for an ordinal with fundamental sequence α0, α1, α2, ...

9.1 Algebraic notation

We define the following operations on ordinals :

• addition : α+ 0 = α;α+ suc(β) = suc(α+ β);α+ lim(f) = lim(n 7→ α+ f(n))

• multiplication : α× 0 = 0;α× suc(β) = (α× β) + α;α× lim(f) = lim(n 7→ α× f(n))

• exponentiation : α0 = 1;αsuc(β) = αβ × α;αlim(f) = lim(n 7→ αf(n))

9.2 Veblen functions

These functions use fixed points enumaration : ϕ(. . . , β, 0, . . . , 0, γ) represents the (1 + γ)th common fixed point of the functions
ξ 7→ ϕ(. . . , δ, ξ, 0, . . . , 0) for all δ < β.

27

9.3 Simmons notation

Fixfz = fw(z + 1) = least fixed point of f strictly greater than z.
Next = Fix(α 7→ ωα)
[0]h = Fix(α 7→ hαω) ; [1]hg = Fix(α 7→ hαgω) ; [2]hgf = Fix(α 7→ hαgfω) ; etc...
Correspondence with Veblen’s φ : φ(1 + α, β) = ([0]αNext)1+βω;φ(α, β, γ) = ([0]β(([1][0])αNext))1+γω

9.4 RHS0 notation

We start from 0, if we don(t see any regularity we take the successor, if we see a regularity, if we have a notation for this
regularity, we use it, else we invent it, then we jump to the limit.
Hfx = lim x, fx, f(fx), . . . ;R1fgx = lim gx, fgx, ffgx, . . . ;R2fghx = lim hx, fghx, fgfghx, . . .
Correspondence with Simmons notation : . . . , [3]→ R5, [2]→ R4, [1]→ R3, [0]→ R2, Next→ R1, ω → Hsuc 0

9.5 Ordinal collapsing functions

These functions use uncountable ordinals to define countable ordinals.
We define sets of ordinals that can be built from given ordinals and operations, then we take the least ordinal which is not in
this set, or the least ordinal which is greater than all contable ordinals of this set.
These functions are extensions of functions on countable ordinals, whose fixed points can be reached by applying them to an
uncountable ordinal.
Examples :

• Madore’s ψ : ψ(α) = εα if α < ζ0;ψ(Ω) = ζ0 which is the least fixed point of α 7→ εα.

• Feferman’s θ : θ(α, β) = ϕ(α, β) if α < Γ0 and β < Γ0; θ(Ω, 0) = Γ0 which is the least fixed point of α 7→ ϕ(α, 0).

• Taranovsky’s C : C(α, β) = β + ωα if α is countable; C(Ω1, 0) = ε0 which is the least fixed point of α 7→ ωα.

28

10 Comparison table

Name Symbol Algebraic Veblen Simmons RHS0 Madore Taranovsky
Zero 0 0 0 0
One 1 1 ϕ(0, 0) suc 0 C(0,0)
Two 2 2 suc (suc 0) C(0,C(0,0))

Omega ω ω ϕ(0, 1) ω H suc 0 C(1,0)
ω + 1 suc (H suc 0) C(0,C(1,0))
ω × 2 H suc (H suc 0) C(1,C(1,0))
ω2 ϕ(0, 2) H (H suc) 0 C(C(0,C(0,0)),0)
ωω ϕ(0, ω) H H suc 0 C(C(1,0),0)

ωω
ω

ϕ(0, ωω) H H H suc 0 C(C(C(1,0),0),0)
Epsilon zero ε0 ε0 ϕ(1, 0) Next ω R1Hsuc 0 ψ(0) C(Ω1, 0)

ε1 ϕ(1, 1) Next2ω R1(R1H)suc 0 ψ(1) C(Ω1, C(Ω1, 0)
εω ϕ(1, ω) Nextωω HR1Hsuc 0 ψ(ω) C(C(0,Ω1), 0)
εε0 ϕ(1, ϕ(1, 0)) NextNextωω R1HR1Hsuc 0 ψ(ψ(0)) C(C(C(Ω1, 0),Ω1), 0)

Zeta zero ζ0 ζ0 ϕ(2, 0) [0]Next ω R2R1Hsuc 0 ψ(Ω) C(C(Ω1,Ω1), 0)
Eta zero η0 η0 ϕ(3, 0) [0]2Next ω R2(R2R1)Hsuc 0 C(C(Ω, C(Ω,Ω)), 0)

ϕ(ω, 0) [0]ωNext ω HR2R1Hsuc 0 C(C(C(0,Ω1),Ω1), 0)
Feferman Γ0 Γ0 ϕ(1, 0, 0) [1][0]Next ω R3R2R1Hsuc 0 ψ(ΩΩ) C(C(C(Ω1,Ω1),
-Schütte = ϕ(2 7→ 1) = R3...1Hsuc 0 Ω1), 0)

Ackermann ϕ(1, 0, 0, 0) [1]2[0]Next ω R3(R3R2)R1Hsuc 0 ψ(ΩΩ2

)
= ϕ(3 7→ 1)

Small Veblen ϕ(ω 7→ 1) [1]ω[0]Next ω HR3R2R1Hsuc 0 ψ(ΩΩω) C(Ωω1 , 0)
ordinal = C(C(C(C(0,Ω1),

Ω1),Ω1), 0)

Large Veblen least ord. [2][1][0]Next ω R4R3R2R1Hsuc 0 ψ(ΩΩΩ

) C(ΩΩ1
1 , 0)

ordinal not rep. = R4...1Hsuc 0 = C(C(C(C(Ω1,Ω1),
Ω1),Ω1), 0)

Bachmann- least ord. Rω...1Hsuc 0 ψ(εΩ+1) C(C(Ω2,Ω1), 0)
Howard not rep.
ordinal

11 Links

• http://www.madore.org/%7Edavid/weblog/2011-09-18-nombres-ordinaux-intro.html : Tutorial introduction to ordinal num-
bers in French

• https://sites.google.com/site/pointlesslargenumberstuff/home/l/pglin?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F
: Pointless Gigantic List of Infinite Numbers

• https://sites.google.com/site/largenumbers/home/appendix/a/infinite numbers : Sbiis Saibian’s !!! FORBIDDEN LIST
!!! of Infinite Numbers

• http://quibb.blogspot.fr/p/infinity-series-portal.html : Professor Quibb’s Infinity Series Portal

• http://googology.wikia.com/wiki/Ordinal notation : Ordinal notation

• https://sites.google.com/site/travelingtotheinfinity/ : Traveling to the infinity

• http://www.cs.man.ac.uk/ hsimmons/TEMP/OrdNotes.pdf : A short introduction to Ordinal Notations by Harold Sim-
mons

• http://www.mathematik.uni-muenchen.de/ buchholz/articles/jaegerfestschr buchholz3.pdf : A survey on ordinal notations
around the Bachmann-Howard ordinal by Wilfried Buchholz

• http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm : Ordinal Notation by Dmytro Taranovsky

• http://arxiv.org/html/1203.2270 : Higher Order Set Theory with Reflective Cardinals by Dmytro Taranovsky

• https://www1.maths.leeds.ac.uk/ rathjen/realm.pdf : The Realm of Ordinal Analysis by Michael Rathjen

• https://cage.ugent.be/ jvdm/Site/Research files/DissertationJeroenVanderMeerenPrinted.pdf : Connecting the Two Worlds:
Well-partial-orders and Ordinal Notation Systems¡/a¿ by Jeroen Van der Meeren¡br¿

• https://en.wikipedia.org/wiki/Veblen function : Veblen function on Wikipedia

29

• http://www.ams.org/journals/tran/1908-009-03/S0002-9947-1908-1500814-9/S0002-9947-1908-1500814-9.pdf : Continuous
increasing functions of finite and transfinite ordinals by Oswald Veblen

• http://en.wikipedia.org/wiki/Ordinal collapsing function : Ordinal collapsing function on Wikipedia

• https://en.wikipedia.org/wiki/Buchholz psi functions : Buchholz psi functions on Wikipedia

• http://www.madore.org/%7Edavid/math/ordtrees.pdf : Ordinal trees

• https://johncarlosbaez.wordpress.com/2016/06/29/large-countable-ordinals-part-1/ : Large Countable Ordinals by John
Baez, Part 1

• https://johncarlosbaez.wordpress.com/2016/07/04/large-countable-ordinals-part-2/ : Large Countable Ordinals by John
Baez, Part 2

• https://johncarlosbaez.wordpress.com/2016/07/07/large-countable-ordinals-part-3/ : Large Countable Ordinals by John
Baez, Part 3

• https://medium.com/@joshkerr/mind-blown-the-fast-growing-hierarchy-for-laymen-aka-enormous-numbers-d9a865c6443b :
Mind blown: the fast growing hierarchy for laymen — aka enormous numbers

• https://sites.google.com/site/largenumbers/home : Sbiis Saibian’s Large Number Site

• http://forums.xkcd.com/viewtopic.php?f=14&t=7469 : My number is bigger !

• http://www.cl.cam.ac.uk/%7Ejrh13/papers/reflect.html : Metatheory and Reflection in Theorem Proving: A Survey and
Critique¡/a¿ by John Harrison¡br¿

• http://math.stanford.edu/%7Efeferman/papers/penrose.pdf : Penrose’s Gödelian argument by Solomon Feferman

• http://www.turingarchive.org/browse.php/B/15 : Systems of logic based on ordinals by Alan Turing

• https://coq.inria.fr/documentation : Coq documentation

• http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Documentation : Agda documentation

30

