A Tutorial Overview of Ordinal Notations

Jacques Bailhache (jacques.bailhache@gmail.com)

January 7, 2021

1 Interest of transfinite ordinal numbers

The domain of transfinite ordinal numbers, or ordinals, has the particularity of being the only mathematical domain that cannot
be automated. In all other domains of mathematics, it is at least theoretically possible to deduce the theorems automatically
from a formal system consisting of a finite set of axioms and rules. But Gddel proved that given any formal system of a theory
sufficiently powerful to contain arithmetics, it is possible to build a proposition that expresses its own unprovability in this formal
system. This proposition, which is very huge, has also a meaning as an ordinary arithmetic proposition, but is very useless in
ordinary arithmetics. If the formal system is consistent, then this proposition is undecidable.

At first sight one could think that we just have to add this proposition to the system as an axiom, but this augmented system
also have its own Godelian proposition. By adding successively Godelian propositions, we obtain an infinite sequence of systems,
and the system defined as the union of all these systems also has its Gédelian proposition, and so on. But according to Solomon
Feferman in ”Penrose’s Godelian argument” http://math.stanford.edu/ feferman/papers/penrose.pdf p.9 :

”one obtains completeness for all arithmetical sentences in a progression based on the transfinite iteration of the so-called global
or uniform reflection principle”

The uniform reflection principle, which is something similar to adding the Gédelian proposition as an axiom, is described for
example in John Harrison’s paper ”Metatheory and Reflection in Theorem Proving: A Survey and Critique”
http://www.cl.cam.ac.uk/ jrh13/papers/reflect.ps.gz p.18 :

= vn.Pr([¢[n]]) = ¢[n]

Harrison also says p.19 :
”Feferman showed that a transfinite iteration based on it proves all true sentences of number theory”.
So we can say that the construction of transfinite ordinals can store all the creative part of mathematics.

2 Mathematical reminders

2.1 Combinatory logic and lambda calculus

These theories are formalization of the notion of information processing.

Everything is represented by information processing or functions, even data. An elementary piece of data, like a boolean data
(true or false), can be represented by a function with two variables, which gives the first one if the value is true, or the second
one if the value is false. A structured information, for example a couple of value, is represented by a function that, when applied
to the boolean true value, gives the first value of the couple, and when applied to the boolean false, gives the second value of
the couple.

A function with two variables is represented by a function that, when applied to the first variable, gives another function which,
when applied to the second variable, gives the final result, and so on. A function that gives several result can be represented by
a function that gives a structured containing all the results. So we have to consider only functions that, when applied to one
variable, also called ”argument” or sometimes ”parameter”, give one result.

The application of a function f to a variable x is written ”f x”.

7(f x) y” may be written simply "f x y”.

The following cases can be distinguished according to the relationship between the variable to which the function is applied and
the result of the application of this function to this variable :

e The result is the variable itself : the function is called identity, written "I”. For any x, we have I x = x.
e The result is y which does not depend on the variable. The function is a constant function which always gives y as result.
It is written "K y”. For any x and y, we have Ky x = y.

e The result is the result of the application of a to b, where both a and b may depend on the variable. In this case, the
function is written ”S f g” where f is a function that gives a when applied to the variable and g is a function that gives b
when applied to the variable. For any f, g and x, S f g x = f x (g x).

Any function can be represented by applications of I, K and S, or even only K and S, because I = S K K. This is called
”combinatory logic”.

But with this representation we obtain huge expressions difficult to read and understand. So we will introduce a notation to
represent the function that, when applied to a variable x, gives a result M, where M represents an expression that may contain
one or several occurences of x. Different notations are used, depending on typographic possibilities, for example :

M with x replaced by % (Principia Mathematica)

%.M (original notation not very used)

"x.M

\x.M

Az.M (probably the most used notation in lambda calculus)
(AxM)

Az[M]

=M

Az — M or \x -> M (in Haskell)

Ax. Ay Az.M may be written A\zyz.M.

This is the lambda calculus notation.

The combinatory logic representation of a function can be retrieved from its lambda calculus representation using the following
correspondence rules :

o \xx=1
e \xr.y = Ky if y does not contain x
e A\z.(ab) = S(Az.a)(Ax.b)

(Az.M)N is the result of the substitution of x by N in M.

The lambda calculus notation has a disadvantage for example Az.x and Ay.y represent the same function although they are
different expressions. To avoid this disadvantage, we can use De Bruijn index. With this notation, this function is written A1.
Each occurence of a variable is replaced by a natural number n which means the variable corresponding to the n-th lambda in
which it is nested, starting from the innermost.

With this notation we have :

o [=1
o K =A)\2
e S =)A\31(21)

I will sometime use the notation [...*...Jor [...e...]for A...1....

See also https://ryanflannery.net /research/logic-notes/Church-CalculiOfLambdaConversion.pdf for more information about com-
binatory logic and lambda calculus.

2.2 Natural numbers

Natural numbers are defined by Peano axioms :

0 is a natural number.

Every natural number has a successor.

0 is not the successor of any natural number.

If two natural numbers have the same successor, they are equal.

If 0 has a property, and if the fact that some natural number has this property implies that its successor also has this
property, then every natural number has this property.

Arithmetical operations are defined as follow, where suc(n) represents the successor of the natural number n :

e addition : a + 0 = a;a + suc(b) = suc(a + b)
e multiplication : a -0 = 0;a - suc(b) = (a-b) +a

suc(b) _— ab .

e exponentiation : a° = 1;a a

For natural numbers, the addition and the multiplication are commutative : a+b = b+a;a-b = b-a, but not the exponentiation
. generally a® # b°.
We shall see later that the addition and the multiplication of transfinite ordinal numbers are not commutative.

2.3 Composition and iteration of functions

The composition of two functions f and g, written B f g or f o g is a function satisfying (f o g)x = f(gx).
The composition of a function with itself f o f can be written f2.
More generally, the n-th iterate f™ of the function f is defined by :

o f0=1
° fsuc(n) _ f ° fn

and has the following properties :

° fa+b — fb ° fa
o fr= (s

2.4 Different ways of representing finite sequences

A finite sequence of length n of elements of a given set S can be considered as a function which, to each natural number less
than n, associates an element of S.
For example, we can define a finite sequence of length 4 of natural numbers by the function f defined by :

There are different ways to represent such a sequence :

e Comma separated list, from left to right : 4,3,0,8
e Comma separated list, from right to left : 8,0,3,4

. 4 3 0 8
e Matrix with values and ranks : (O 1 9 3)

. s 4
e Matrix with values and ranks, omitting null values : (O :15 g)
Polynom : 8z + 3z + 4
A number whose representation in base n is the considered sequence, where n in any number greater than all numbers of

the sequences, for example for n = 10, the number 8034. This is also the value of the polynom for x = n.

Some representations of ordinals use finite sequences of ordinals. Different ways of representing sequences are used by these
representations, for example comma separated list for Veblen function with finitely many variables, matrix with values and ranks
for Schiitte bracket or Klammersymbol, or base {2 representation for collapsing functions, where €2 is an ordinal which is greater
than all ordinals of the sequence, for example if we want to represent sequences of countable ordinals, we can use for 2 the least
uncountable ordinal wy.

2.5 Set theory

A set is a well-determined unordered collection of elements.

a € A means that a is an element of the set A.

The set B is a subset of the set A if and only if each element of B is also an element of A.

A binary relation R on a set A is a set of ordered pairs (a, b) of elements of A. (a,b) € R may be written a R b.

2.5.1 Cardinality of a set

The cardinality of a finite set is simply its number of elements.

The cardinality can be generalized to infinite sets. Two sets have the same cardinality if there is a bijection between them,
which is a relation that associates one element of the second set to any element of the first set and reciprocally. The cardinality
of a set A is less than the cardinality of a set B if any element of A can be associated with an element of B but there are some
elements of B which are not associated to any element of A. For example, the cardinality of the natural numbers is less than the
cardinality of the real numbers.

2.5.2 Cofinal subsets

If A is a set with a binary relation R and B is a subset of A, then B is said to be a cofinal subset of A with respect to R if, for
every a € A, there exists some b € B such that a R b.
When R is an order relation like ” < ” (less than), cofinal subsets are sometimes said to be unbounded.

3 Defining transfinite ordinal numbers

Natural numbers can be represented by sets. Each number is represented by the set of all numbers smaller than it.

e 0= {} (the empty set)

1={0} = {{}}

2={0,1} = {{}, {{}}}

3=1{0,1,2} = {1 {OHL UL

The successor of a natural number can be defined by suc(n) =n+1=nU{n}.

We have n < p if and only if n C p.

N is the set of all natural numbers : N = {0,1,2,3,...} The natural numbers can be generalized to what is called ”transfinite
ordinal numbers”, or simply ”ordinal numbers” or ”ordinals”, by considering that infinite sets represent ordinal numbers. N
considered as an ordinal number is written w. w is the least ordinal which is greater than all the numbers 0, 1, 2, 3, ... We say that
w is a limit ordinal and 0, 1, 2, 3, ... is a fundamental sequence of w. This is written : w = sup{0,1,2,3,...} or w = lim(n — n)
because the n-th element (starting with 0) of the sequence is n. An ordinal does not have a unique fundamental sequence, for
example 1, 2, 3, 4, ... is also a fundamental sequence of w, because the least ordinal that is greater than all ordinals of this
sequence is also w (more generally the limit ordinal is the same if any number of the least items of a sequence are removed), and
the same stands for the sequence 0, 2, 4, 6, ...

Any ordinal can be defined as the least ordinal strictly greater than all ordinals of a set : the empty set for 0, {a} for the
successor of «, {ag, ay, @s, ...} for an ordinal with fundamental sequence «ag, o, g, ...

The successor can be generalized to transfinite ordinal numbers : suc(w) =w+ 1 =wU{w} ={0,1,2,3,...,w}; suc(suc(w)) =
w+2={0,1,2,3,...,w,w~+ 1} and so on.

Then we can consider the set {0,1,2,3,...,w,w+ 1,w+2,w+3,...} which is a limit ordinal, and w,w+ 1,w+2,w +3,... is a
fundamental sequence of this ordinal. This ordinal is w4+ w =w -2 or w - 2 or w2.

Then we can go on building greater and greater ordinals : w-3,...,w-w = w?,w?,...,w?,w* ,....

w is the least ordinal which has not a finite cardinality.

wy is the least uncountable ordinal (an uncountable ordinal is an ordinal whose cardinality is strictly greater than the cardinality
of w), and is also the set of all countable ordinals (ordinals whose cardinality is less than or equal to the cardinality of w). This
means that all ordinals less than w; are countable, and w; and all ordinals greater than it are uncountable.

We can define a sequence of ordinals wy, where k is a natural number by wg = w and w41 is the least ordinal whose cardinality
is greater than the cardinality of wy.

Any ordinal « can be defined by either :

e Zero: a=0

e The successor of another ordinal : o = suc(8) =5+ 1

e A limit ordinal : a = limgf = supecs{f(£)}
where for any £ € § or £ < f3, f(€) is an ordinal. A limit ordinal can always be defined as lim,,, f by eventually rearranging
the order of elements of 3. I will sometimes use the notation Limy, for lim,,,. When 5 = w = wq, lim,, f will sometimes be
written more simply lim f. This is the case for countable limit ordinals, which have the same cardinality as w.

Note that w,, = lim,(§ — we), so lim, [= lim,(§ = f(we)) = lim(€ — f(we)).

An ordinal number can be defined as the order type of a well ordered set. A well ordered set is a set with well-order relation,
which is a total order relation having the property that any non-empty subset of the well ordered set has a least element.
Examples :

e w is the order type of the set of natural numbers ordered with the "natural” order.
e w + 1 is the order type of the set of natural numbers ordered with a relation considering 0 as the largest element, and the
other numbers ordered with the "natural” order.

The cofinality of an ordinal is defined by :

e cof 0 =0
e cof(suc a) =1
o cof(limgf) = B if there is no ordinal v < /8 such that limg f = lim4g.

Examples :

cof3=1
cofw=w
cof(w+3)=1
cof(w-2) =w
Cofw1 = W1
COfLU3 = W3
cofw, = w

cof W41 = Ww+1

A regular ordinal is an ordinal which is equal to its cofinality. A singular ordinal is an ordinal which is not regular. Assuming the
axiom of choice, wy41 is regular for any ordinal a. The cofinality of any ordinal is a regular ordinal, which means cof(cof o) =
cof a.

For example :

e w is regular because cof w = w

e w -2 is singular because cof(w - 2) = w
e w; is regular because cof w; = wy

e w, is singular because cof w, = w

® w,y1 is regular for all ordinal a.

In the case of a limit ordinal, the &-th element of a fundamental sequence of « i sometimes written «[¢] which is not a rigorous
notation, because an ordinal may have different fundamental sequences, for example w = lim,[e] = lim,[e + 1] which gives
wlal=a=a+1.

We will introduce later other mathematical objects called tree ordinals which are considered different if the fundamental sequences
are different.

Ordinals can be divided into 4 main categories ; any ordinal « belongs to one ot these categories :

(finite) integers : 0 < a < w
transfinite recursive ordinals : w < a < w{K
non recursive countable ordinals : wch <a<uw

- W

uncountable ordinals : w; < a.

The category of all recursive ordinals includes categories 1 and 2.

The category of all countable ordinals includes categories 1, 2 and 3.

w is the least transfinite (non finite) ordinal and the set of all finite ordinals (category 1)

w{E is the least non recursive ordinal and the set of all recursive ordinals (categories 1 and 2).

wy is the least uncountable ordinal and the set of all countable ordinals (categories 1, 2 and 3).

Technically, an ordinal « is said to be recursive if there is a recursive well-ordering of a subset of the natural numbers having
the order type a.

Intuitively, a recursive ordinal is an ordinal that can be implemented by some computer program or a Turing machine.

For natural numbers, arithmetical operations are defined as follows :

e addition : a + 0 = a;a + suc(b) = suc(a + b)
e multiplication : a-0 = 0;a - suc(b) = (a-b) +a
e exponentiation : a® = 1; %% =4 . ¢

The definitions of arithmetical operations can be generalized to countable ordinals by adding canonical rules for limit ordinals :

e addition : a+ 0 = a;a + suc(B) = suc(a + B);a + lim(f) = lim(n — a+ f(n))
e multiplication : a-0=0;a - suc(f8) = (a-B) + ;- lim(f) = lim(n — « - f(n))
e exponentiation : a® = 1;a5%(®) = o . o;) = lim(n — of (M)

and more generally to any ordinal, countable or not :

e addition : a4+ 0 = a;a + suc(B) = suc(a + B);a + limg(f) = limg(§ — a + f(£))
e multiplication : a0 = 0;a - suc(f) = (a-) + asa - limg(f) = lim(§ — a - f(£))
e exponentiation : a® = 1;a5%(®) = of . ;a8 = limg (€ s of(©)

Note that addition and multiplication are not commutative, for example 1 + w = w # w + 1, because if we take 0, 1, 2, 3, ...
as fundamental sequence of w, then a fundamental sequence of 1 + w is 140, 1+1, 142, 143, ... =1, 2, 3, 4, ... and the least
ordinal that is greater than all ordinals of this sequence is w. We will say that ”1+4” is "absorbed” by w. More generally, we
have 1 + a = « for any ordinal o > w.

Also note that lim f = f(w) for some functions f, but not all. For example, if f(a) = w+ a,lim f = sup{w,w+1,w+2,...} =
wHw=w-2,and also f(w) =w+w=w- 2. But if f(a) = a-2,lim f =sup{0,2,4,6,...} =w, but f(w) =wt+w=w-2.

A class of ordinals is said to be closed when the limit of a sequence of ordinals in the class is again in the class.

For tutorial introductions to transfinite ordinal numbers, see also :

e Madore’s introduction in French :
http://www.madore.org/%7Edavid /weblog/2011-09-18-nombres-ordinaux-intro.html
e Pointless Gigantic List of Infinite Numbers :
https://sites.google.com/site/pointlesslargenumberstuff /home/1/pglin?tmpl=%2F system%2Fapp%2Ftemplates%2F print %2F
e Shiis Saibian’s !!! FORBIDDEN LIST !!! of Infinite Numbers :
https://sites.google.com/site/largenumbers/home/appendix/a/infinite_numbers

Here are some examples of Haskell definitions of ordinal types.

module Cord_and_ord where

—- Natural numbers
data Nat

= ZeroN

| SucN Nat

—- Countable ordinals
data Cord
= ZeroC

| SucC Cord

| LimC (Nat -> Cord)

—- 0Ordinals
data Ord

= Zero

| Suc Ord

| Lim (Nat -> Ord)
| Ext (Ord -> Ord)

ord0fCord ZeroC = Zero
ord0fCord (SucC a) = Suc (ord0fCord a)
ord0fCord (LimC s) = Lim (\n -> ord0fCord (s n))

cord0f0rd Zero = ZeroC
cord0f0rd (Suc a) = SucC (cordDfOrd a)

cord0f0rd (Lim s)
cord0f0rd (Ext f)

module Ords where

—— Natural numbers
data 0rdO

= ZeroO

| SucO 0rdo

LimC (\n -> cord0fOrd (s n))
cord0f0rd (f Zero)

—-- Countable ordinals wl

data Ordil
= Zerol
| Sucl Ordi

| Lim01 (0rd0 -> Ordil)

—- Uncountable ordinals w2

data 0Ord2
= Zero2
| Suc2 0rd2

| Lim02 (0rd0 -> 0rd2)
| Lim12 (Ord1l -> 0rd2)

—- Uncountable ordinals w3

data 0Ord3
Zero3
Suc3 0rd3

Lim13 (Ordl -> 0rd3)
Lim23 (0rd2 -> 0rd3)

module Ords where

—- Ordinals
data Ord
= Zero

|
| Lim03 (0rd0 -> 0rd3)
I
I

One
WO
Wi
W2
Sup Ord (Ord -> Ord)

two = Sup One (\x -> One)
three = Sup One (\x -> two)

suc a = Sup One (\x -> a)

-- fra(x)

fpower0 f Zero x = x

—-- fpowerO f (Suc a) x = £ (fpower0 f a x)

fpowerO f (Sup One s) x = f (fpower0 f (s Zero) x)

-- fpower0 £ (Lim s) x = Lim (\n -> fpowerO f (s n) x)
fpower0 £ (Sup WO s) x = Sup WO (\n -> fpower0 f (s n) x)

w_times_2 = Sup WO (\n -> fpower0 suc n WO)

module Ords where

-— Ordinals
data Ord

= Zero

| One

| W Ord

| Sup Ord (Ord -> Ord)

two = Sup One (\x -> One)
three = Sup One (\x -> two)

suc a = Sup One (\x -> a)

-- fra(x)

fpower0 f Zero x = x

-- fpower0 f (Suc a) x = £ (fpower0 f a x)

fpower0 f (Sup One s) x = £ (fpower0 f (s Zero) x)

-- fpower0 f (Lim s) x = Lim (\n -> fpower0 f (s n) x)

-- fpower0 f (Sup WO s) x = Sup WO (\n -> fpower0 f (s n) x)

w_times_2 = Sup (W Zero) (\n -> fpowerO suc n (W Zero))

module Ord where
ident x = x
data Ord
= Zero
| Suc Ord
| Lim Ord (0Ord -> Ord)

--—plus ab=b+a

plus Zero b = b
plus (Suc a) b

= Suc (plus a b)
plus (Lim n s) b =

Lim n (\x -> plus (s x) b)

-- times a b = b *x a

times Zero b = Zero

times (Suc a) b = plus b (times a b)

times (Lim n s) b = Lim n (\x -> times (s x) b)

-— power a b = b"a

power Zero b = Suc Zero

power (Suc a) b = times b (power a b)

power (Lim n s) b = Lim n (\x -> power (s x) b)

one = Suc Zero

omega = Lim Zero ident

omegaplusl = Suc omega

omegatimes2 = plus omega omega
omegapower2 = times omega omega
omegapoweromega = power omega omega

omegal = Lim (Suc Zero) ident

4 Main domains of ordinals

In his article "Petit guide bordélique de quelques ordinaux intéressants” : http://www.madore.org/ david/weblog/d.2017-08-
31.2462.ordinaux-interessants.html David madore divides the ordinals into four large domains, delimited by 3 particulary impor-
tant ordinals :

e Domain 0 : if 0 < a < w, « is an integer, a finite number

w is the supremum of all integers, and the least infinite ordinal.

e Domain 1 : if w < a < w{X, a is an infinite recursive ordinal, which means that there is a recursive well-ordering of a
subset of the natural numbers having the order type a. Such ordinals can also be said to be ”computable” which means
that it is possible to write computer programs which manipulate such ordinals.

w§'K is the supremum of all recursive ordinals, and the least non recursive ordinal.

e Domain 2 : if w{'® < a < wy, a is a non recursive countable ordinal, or a LUCO (Large Unrecursive Countable Ordinal).
The most interesting ordinals in this domain are admissible ordinals. The exact definition of admissible ordinals is rather
technical, but intuitively, an ordinal « is admissible if you cannot make a greater ordinal using smaller ordinals, according
to David Madore’s article ”Un peu de programmation transfinie” :

http://www.madore.org/ david/weblog/d.2017-08-18.2460.transfinite-programming.html

w1 is the supremum of all countable ordinals, and the least uncountable ordinal.

e Domain 3 : if w; < a,« is an uncountable ordinal. The most interesting ordinals in this domain are cardinals, which we
will study with more details later.

5 Veblen functions

The next step is the limit or least upper bound of w,w”,w*", ..., written sup{w7w“’,w“’w, ...} which is called gy. Note that we
have w® = gg. We say that g is a fixed point (the least one) of the function o — w®.
Then we can go on with eg + 1,60 +2,...,60 + 0 = €0 2,...,80 - €0 = £0%, €5’ -.-
0 £
The limit of &g, €f°, 580 ,...1is called ;. It can be shown that it is also the limit of gg + 1, w01, w® o (see proof below).

These two fundamental sequences are examples of two ways of ascending ordinals :

e Build greater ordinals from known ones by increasing them using operations like successor, addition, multiplication, expo-
nentiation, ... This method is used by the RSHO notation which we will study later.

e When we have found a function that, when applied to a given ordinal, gives a greater one (for example o — w®), use it ad
infinitum starting for example with 0, and then to go further use it ad infinitum starting with the successor of the previous
result, and so on. This is called an enumeration of the fixed points of this function. A fixed point of a function f is a value
(for example an ordinal) o with f(a) = a. Under some conditions (see below), the least fixed point of f is the limit of 0,
£(0), £(£(0)), f(f(£(0))), ... If it is called «, the next fixed point is the limit of o+ 1, f(a+1), f(f(a+1)), f(f(f(a+1))),....
More generally, the least fixed point of f that is greater or equal to ¢ is the limit of {, f(¢), f(f(¢)),. ... The Veblen functions
use this method.

The required conditions are described for example in http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS /Fruitful.pdf
page 8 lemma 3.9 :

For each fruitful function f and each ordinal ¢, f¥(¢ 4 1) is the least ordinal v such that (< v = f(v), or the least fixed point of
f that is strictly greater than ¢ (or greater than or equal to ¢ + 1).

f9(C+1) is the limit of {4+ 1, f(C + 1), f(f(C+1)),....

A fruitful function is a function that is inflationary, monotone, big, and continuous.

A function f is inflationary if a < f(«), monotone if a < 8 = f(a) < f(B), big if w* < f(a) except possibly for a = 0,
continuous if f(VA) = VI{[A] where VA is the pointwise supremum of the set A.

We will now prove by induction the equivalence of the two fundamental sequences above.

a

We will use the notation a* for an an ”exponential tower” with o repeated n times.
€0

Note that the ordinals respectively limits of the fondamental sequence whose n-th term is e, and the one whose n-th term is
Ego

686 is the same, the least fixed point of the function a — ¢, which is greater than w and also than .

w0t o

So we have proved what we want if we prove that, for any n, we have w®’ = gg°
+1
For n = 0, we have w* ™" = w¥ ™% = 0@ = (%)% = g%,
Lwsot! ¥
Now suppose we have w®’ = 580
Lweott 0¥
E
We must prove the equality for n+1, which can be written w® =gy
wwott c0® c0® c0®
o <5 . Lteg <
We have w® = w by our hypothesis) = w®o for the same reason than 1 + w = w, see above) = w0 o =
y yp)
co¥ .50“’
< 50
(weo)%o =¢," . QED.
a +1
In a similar way, the limit of &1, £5* ,51 ,...1s called €5 and is also the limit of €1 + 1, w1 w@™ ...
We can define the same way en, for any natural number n. Then ¢, is defined as the limit of €0,€1,€2,€3, ..., and £,41 as the
ew+1
hmltofew,ew,ew co.or ey, + 1w T wv oo
. . . . = 501 €a+1 w5a+1
o ..
For any ordinal a, 441 is the limit of €4,€,°, €4 . and is also the limit of e, + 1, w , W ,
After comes e.,, and the limit of g, ¢, ,¢€ Wthh is called (y. This is the least fixed point of o — .. The next one
€09 05Ce0sCeeyr 0 p

is (1 which is the limit of (o + 1,€¢ 41, 415---- Then we get C2,Cs, ..., Gy Cutts -5 Ces- -1 Ccor -+ -5 Cey s - - -+ The limit of

03 CO? CCO y CCCO g is called 7o
We can go on using successively different greek letters, or we can use functions indiced by numbers

e 6 o o o
)
[V)
—~
Q
o~ — — ~— ~—
I
ra:
Q

s the (1 + 3)-th fixed point of & — @, (€) .

or a function with two variables :

10

e v(0,0) =w
e o(l,a) =¢,
i 90(2a a) = (a
® 0(3,a) =1nq
e o(a+1,0) is the (1 + B)-th fixed point of & — p(«,§) .

Every non-zero ordinal a < I'g, where I'g is the smallest ordinal « such that ¢, (0) = a, can be uniquely written in normal form
for the Veblen hierarchy:

a =g (1) + s, (72) + -+ s, (W),
where

0, (1) = @, (72) = -+ = 0, (V) Ym < @p,, (Ym) for m € {1,..., k}

Now we will see how we can find the fundamental sequence of an ordinal written in this notmal form.

From the rule defining addition of a limit ordinal :

a+lim(f) =lim(n— a+ f(n))

we deduce the fundamental sequence :

(a+ B)[n] = a + Bl

if 8 is a limit ordinal.

In particular, we have :

(0. (1) + 908, (12) + -+ + 0, ()] = @, (1) + -+ + gy (We-1) + (@5, (W) [1]), where ©g, (1) = ©3,(72) = -+ = ©5, (k)
and v, < ¢g,, (ym) for m € {1,2, ..., k},

Then, @o(7) is w?.

For v =0itis 1.

From the rule of multiplication by a limit ordinal :

a-lim(f) =lim(n— a- f(n))

we deduce the fundamental sequence :

(- B)[n] = a- Bln] if £ is a limit ordinal.

In particular, for w :

(a-w)n]=a-wh]=a-n

Then we have :

po(y+1) =wt =W w=p(y) w

So the corresponding fundamental sequence is :

o7+ D) = (o) -)] = po(7) -

If v is a limit ordinal and v < o(7), the fundamental sequence can be defined canonically:

eo(7)[n] = @o(v[n])

Note that if we remove the condition v < g(7y) there is a problem. For example, for v = ¢, we have v = ¢((y) = w”. Then,
if we take as fundamental sequence of o the sequence £0[0] = 0 and eo[n + 1] = w®™ then ¢o(7)[0] = w=[0] = £0[0] = 0, but
po(1[0]) = wel = =1.

Then, @g41(7) is the 1 + -th fixed point of the function & — ¢g(§), or more simply the function ¢g.

In particular, ¢g41(0) is the least fixed point of this function, which is ¢g“(0). A fundamental sequence of this ordinal is
©8+1(0)[n] = ¢™(0), which can also be written ¢41(0)[0] =0 and Ypera+1(0)[n + 1] = wa(pa+1(0)[n]).

@p+1(7y + 1) is the fixed point of g that follows ¢gi1(y). It is ¢ (¢a+1(y) + 1). This can also be written ¢gyq(y + 1)[0] =
pp+1(7) +1 and @gr1(y + D[n+ 1] = @a(ppa(y + 1)[n]).

If ~ is a limit ordinal, the fundamental sequence can be defined canonically:

par1(V)[] = a1 (v[n]) if v < p(y).

Finally, if £ is a limit ordinal, we define the following fundamental sequences:

©5(0)[n] = @s,(0) if B < 5(0)

ey + 1)[n] = s (s(v) +1)

ws(7)[n] = pp(vy[n]) for a limit ordinal v < ¢z(y).

Concerning ¢g(0)[n], note that if we remove the condition S < ¢g(0) there is a problem. For example, if we take 8 = I'y the
least fixed point of the function £ — ¢¢(0), then we have ¢p,(0) = I'g. A fundamental sequence of I'y is I'g[0] = 0,T[1] =
©0(0) = w® =1,T[2] = ¢1(0) = &, Then we have ¢r,(0)[0] = To[0] = 0, but @r,)(0) = ¢o(0) = w® = 1.

For more explanations about the fundaamental sequence @g(y 4 1)[n] = @gin)(@a(7) + 1) see :
https://www.physicsforums.com/threads/fundamental-sequences-for-the-veblen-hierarchy-of-ordinals.933538 /

11

Let us recap now the results we obtained.
The fundamental sequences for the Veblen functions ¢g(v) = ¢(8,7) are :

1) (pp, (71) + 98, (v2) ++ -+, (W) [n] = s, (71) +- -+ sy (Ve—1) + (@5, (V) [1]), Where wg, (71) > 0p,(72) > -+ > @p, (W)
and v, < @g,, (ym) for m € {1,2, ..., k},
2) 900(0) = 13
@o(v + 1)[n] = wo(y)n
¢p+1(0)[0] = 0 and pp11(0)[n + 1] = @s(ps+1(0)[n)),
Y+ 1)[0] = ppr1(7) +1 and g1 (v + D[+ 1] = ps(ps1(y + 1)[n]),

)

)

) p(

) 8(7)[n] = ¢p(v[n]) for a limit ordinal v < ¢s(7),

) v5(0)[n] = @31 (0) for a limit ordinal 8 < ¢g(0),

) ws(y + 1)[n] = ©am)(ws(y) + 1) for a limit ordinal 3.

From these fundamental sequences, we can retrieve the initial definition of the function ¢.

(1) This does not concern the definition of the ¢ function but the definition of addition

(2) and (3) and (6) for 5 = 0 are equivalent to @o(y) = w?.

(4) pp+1(0) = lim(n — pg™(0)) = ¢3*¥(0) which is the least fixed point of ¢g.

(5) pp+1(y +1) =lim(n — 3" (pa+1(y) + 1)), which is the least fixed point of ¢z strictly greater than ¢g11(7), so with (6) it
gives ppt1(7y) is the 1 + ~-th fixed point of ¢g.

(7), (8) and (6) for 8 limit ordinal complete the definition of ¢g(7y) for 8 limit ordinal.

Here is an Haskell implementation of the ¢ function :

module Phi where

data Nat
= ZeroN
| SucN Nat

data Ord

= Zero

| Suc Ord

| Lim (Nat -> 0Ord)

iter f ZeroN x = x
iter £ (SucN n) x = f (iter f n x)

oplim f a = Lim (\n -> f n a)

opItw f = opLim (iter f)

cantor a Zero = Suc a

cantor a (Suc b) = opItw (\x -> cantor x b) a
cantor a (Lim f) = Lim (\n -> cantor a (f n))
nabla f Zero = f Zero

nabla f (Suc a) = f (Suc (nabla f a))

nabla f (Lim h) = Lim (\n -> nabla f (h n))
deriv f = nabla (opItw f)

phi Zero = cantor Zero

phi (Suc a) = deriv (phi a)
phi (Lim f) = mnabla (opLim (\n -> phi (f n)))

12

iter fn x = f*(x).

opLim f a = limit of f 0 a,f 1 a,f 2 a, ...
opltw f = f«.

cantor a b = a + w’.

deriv f a = the (1+a)-th fixed point of f.
phiab = ¢, (b).

Then we can enumerate the fixed points of the function o — ¢(a,0) and define T',, as the (1 + «)-th fixed point of this function,
or add another variable to the ¢ function and define ¢ o() or (1,0,) as the (1 + a)-th fixed point of this function. So we
have T', = ¢1,0(a) = (1,0,).

More generally, we can define a function with any (finite) number of variables @a, a,_1.....a1,00 (8) = ©(Qn, Qn_1,..., 01,00, 5),
with (@) = @o(a) = ¢(0,a) =w

The notation ¥a,, .4, 1.....a1,00(8) has the advantage of highlighting the different role played by the last variable 3.

For a complete definition of this Veblen function with finitely many variables, see for example :
https://en.wikipedia.org/wiki/Veblen_function :

”Let z be an empty string or a string consisting of one or more comma-separated zeros 0,0, ...,0 and s be an empty string or a
string consisting of one or more comma-separated ordinals ay, ag, ..., @, with ay > 0. The binary function ¢(/3,) can be written
as (s, B8, z,7) where both s and z are empty strings.

The finitary Veblen functions are defined as follows:

* () =w?
* o(z,5,7) = ¢(s,7)
e if 3> 0, then (s, 3, z,7) denotes the (1 + 7)-th common fixed point of the functions £ — (s, 4, &, z) for each § < S

The limit of the ¢(1,0,...,0) where the number of zeroes ranges over w, is sometimes known as the ”small” Veblen ordinal.
Every non-zero ordinal « less than the small Veblen ordinal (SVO) can be uniquely written in normal form for the finitary Veblen
function:

a=p(s1) +(s2) + ...+ @(sk)

where

e k is a positive integer

e p(s1) = p(s2) = ... = p(sk)

® s, is a string consisting of one or more comma-separated ordinals o, 1, Qm 2, ..., Qm.n,, Where o, 1 > 0 and each a;, ; <
©(8m)

For limit ordinals o < SV O, written in normal form for the finitary Veblen function:

o (p(s1) +p(s2) +..- +@(sk))n] = @(s1) + @(s2) + ... + @(sk)n],
e(M)n] =
—nify=1
— cp('y 1) - n if 7 is a successor ordinal
©(y[n]) if 7 is a limit ordinal

e ©(s,8,2z,7)[0] =0 and (s, 5, z,7)[n+ 1] = ¢(s, 8 — 1,¢(s, B, z,7)[n], z) if v =0 and S is a successor ordinal,

e o(s,8,z,7)[0] = ¢(s,B,z,y—1)+ 1 and ¢(s, 8, z,7)[n+ 1] = (s, 8 —1,¢(s, B, z,7)[n], z) if v and B are successor ordinals,
o ©(s,B,z,7)[n] = ¢(s,B,z,v[n]) if v is a limit ordinal,

e ©(s,B,z,7)[n] = ¢(s,Bn],zy) if v =0 and f is a limit ordinal,

e ©(s,B,z,7)[n] = ¢(s,B[n], (s, B,z,v—1)+1,2) if v is a successor ordinal and § is a limit ordinal. ”

The Veblen function can be generalized to transfinitely many variables with a finite number different from 0. Instead of writing

the list of all the variable of the Veblen function, we can write only the non zero variables with position as indice, for example
o(,0,8,v) = p(as, B1,7%). We can then generalize the Veblen function by allowing any ordinal as indices, writing for example

SVO = ¢(1,). The limit of the ordinals that can be written with this notation is called the large Veblen ordinal (LVO).

According to Wikipedia, ”The definition can be given as follows: let « be a transfinite sequence of ordinals (i.e., an ordinal
function with finite support) which ends in zero (i.e., such that ap=0), and let [0 — 7] denote the same function where the

13

final 0 has been replaced by . Then v — ¢(a]0 — +]) is defined as the function enumerating the common fixed points of all
functions £ — ¢(8) where 8 ranges over all sequences which are obtained by decreasing the smallest-indexed nonzero value of
a and replacing some smaller-indexed value with the indeterminate ¢ (i.e., 8 = afig — ¢, ¢ — &] meaning that for the smallest
index ¢ such that «,, is nonzero the latter has been replaced by some value ¢ < «,, and that for some smaller index ¢ < g , the
value o, = 0 has been replaced with £).”

Schiitte brackets or Klammersymbols are another way to write Veblen fuctions with transfinitely many variables. A Schiitte
bracket consists in a matrix with two lines, with the positions of the variables in the second line in increasing order, and the
corresponding values in the first line. This matrix is preceded by the function & — (¢). If we take £ — w®, we get the equivalent
of the Veblen function. With this notation, the previous example is written :

e (Y B «
(3 75
In some of his papers, Harold Simmons puts the function after the matrix, which is more logical, the matrix being considered as
a function which, when applied to a function, gives an ordinal :

(35 3)emes

When the function at the left of the matrix is & — w®, it is sometimes omitted. Example :

G 75)
0 1 3

The corresponding fundamental sequences can be found in https://sites.google.com/site/travelingtotheinfinity /fundamental-
sequences-for-extended-veblen-function .

Another possible notation is to represent the parameters of the ¢ function by a polynom of variable (2 where the exponent

corresponds to the position of the variable, for example p(a,0, 3,7) = @ (70, f1,a3) = (£ — w*) (g f g) = (3 -a+Q-B+7).

For €2, we can choose an ordinal which is greater than all the ordinals we want to produce. Since they all are countable, we can
take for example 2 = w; which is the least uncountable ordinal. The method consisting in using uncountable ordinals to define
countable ordinals is called " collapsing”. We will see later other examples of notations using this method.

Note that ¢(1,0) = (£2) is the least a such that a = ¢(a) = w® (the least fixed point of a — w®); ¢(1,0,0) = p(2?) = p(2-Q)
is the least a such that a = (e, 0) = (2 -). Generally speaking, we can see that f(£2) is the least fixed point of f. We shall
see other examples of this equality later concerning ordinal collapsing functions. Note also that 72" can be replaced by ”1,0” in
the formulas.

If we want to distinguish the last variable, we can also use collapsing with the notation ¢, . . a,(8), writing for example
Soa’ﬂﬂ’((s) = 9092-014’9'[34’7(6)7 or SD(O‘) 6777 6) = QD(Q2 o+ Q- 6 + v, 6)

See Veblen’s article ” Continuous Increasing Functions of Finite and Transfinite Ordinals” (http://www.ams.org/journals/tran/1908-
009-03/50002-9947-1908-1500814-9/S0002-9947-1908-1500814-9.pdf) for more information.

Here is an Agda implementation of the Veblen function with transfinitely many variables :
{-
A definition of the large Veblen ordinal in Agda
by Jacques Bailhache, March 2016
See https://en.wikipedia.org/wiki/Veblen_function
(1) phi(a)=w**a for a single variable,

(2) phi(0,an-1,...,a0)=phi(an-1,...,a0), and

(3) for a>0, c->phi(an,...,ai+l,a,0,...,0,c) is the function enumerating the common fixed points of the

14

functions x->phi(an,...,ai+l,b,x,0,...,0) for all b<a.

(4) Let a be a transfinite sequence of ordinals (i.e., an ordinal function with finite support) which ends 1]
zero (i.e., such that a0=0), and let a[0->c] denote the same function where the final O has been replac
by c.
Then c->phi(a[0->c]) is defined as the function enumerating the common fixed points of all functions
x->phi(b) where b ranges over all sequences which are obtained by decreasing the smallest-indexed nonze:
value of a and replacing some smaller-indexed value with the indeterminate x (i.e., b=al[i0->z,i->x]
meaning that for the smallest index i0 such that ai0 is nonzero the latter has been replaced by some val
z<ai0 and that for some smaller index i<iO, the value ai=0 has been replaced with x).

-}

module LargeVeblen where

data Nat : Set where
0 : Nat
1+ : Nat -> Nat

data Ord : Set where

Zero : Ord

Suc : Ord -> Ord

Lim : (Nat -> Ord) -> 0rd

——rptnf x=f"nx)

rpt : {t : Set} > Nat > (t+ > t) >t > t
rpt 0 £ x = x

rpt (1+ n) £ x = rpt n £ (f x)

-- smallest fixed point of f greater than x, limit of x, f x, £ (f %),
fix : (0Ord -> 0rd) -> Ord -> Ord
fix £ x = Lim (\n -> rpt n f x)

w = fix Suc Zero -- not a fixed point in this case !

-- cantor a b =D>b + w"a

cantor : Ord -> Ord -> Ord

cantor Zero a = Suc a

cantor (Suc b) a = fix (cantor b) a

cantor (Lim f) a = Lim (\n -> cantor (f n) a)

-- phi0 a = w”a
phi0 : Ord -> Ord
phi0 a = cantor a Zero

—-- Another possibility is to use phi’0 instead of phiO in the definition of phi,
-- this gives a phi function which grows slower

phi’0 : Ord -> Ord

phi’0 Zero = Suc Zero

phi’0 (Suc a) = Suc (phi’0 a)

phi’0 (Lim f) = Lim (\n -> phi’0 (£ n))

—- Associative list of ordinals

infixr 40 _=>_&_
data OrdAList : Set where

15

Zeros : OrdAList
=>&_ : Ord -> 0Ord -> OrdAList -> OrdAList

-- Usage : phi al, where al is the associative list of couples index => value ordered by increasing values,
—-- absent indexes corresponding to Zero values

phi : OrdAList -> Ord

phi Zeros = phi0 Zero -- (1) phi(0) = w**0 = 1

phi (Zero => a & Zeros) = phi0O a -- (1) phi(a) = w*xa

phi (k => Zero & al) = phi al -- eliminate unnecessary Zero value

phi (Zero => a & k => Zero & al) = phi (Zero => a & al) -- idem

phi (Zero => a & Zero => b & al) = phi (Zero => a & al) -- should not appear but necessary for completeness
phi (Zero => Lim f & al) = Lim (\n -> phi (Zero => f n & al)) -- canonical treatment of limit

phi (Suc k => Suc b & al) = fix (\x -> phi (k => x & Suc k => b & al)) Zero

-- (3) least fixed point
phi (Zero => Suc a & Suc k => Suc b & al) = fix (\x -> phi (k => x & Suc k => b & al)) (Suc (phi (Zero => a &
Suc k => Suc b & al))) -- (3) following fixed points
phi (Suc k => Lim f & al) = Lim (\n -> phi (Suc k => f n & al)) -- idem
phi (Zero => Suc a & Suc k => Lim f & al) = Lim (\n -> phi (k => Suc (phi (Zero => a & Suc k => Lim f & al)) &
Suc k => f n & al)) -- idem

phi (Lim £ => Suc b & al) = Lim (\n -> phi (f n => (Suc Zero) & Lim f => b & al))

phi (Zero => Suc a & Lim f => Suc b & al) = Lim (\n -> phi (f n => phi (Zero => a & Lim f => Suc b & al) & Lim
f=>b & al))

phi (Lim £ => Lim al) = Lim (\n -> phi (Lim f => g n & al))

l
\

g &
> Lim g & al)

phi (Zero => Suc a & Lim £ Lim (\n -> phi (f n => phi (Zero => a & Lim f Lim g & al) & Lim

f=>gn&al))

SmallVeblen = phi (w => Suc Zero & Zeros)

LargeVeblen = fix (\x -> phi (x => Suc Zero & Zeros)) (Suc Zero)

{-
Normally it should terminate because the parameter of phi lexicographically decreases, but Agda is not clever er
so it must be called with no termination check option :

$ agda -I --no-termination-check LargeVeblen.agda

/ __\ |
T R I (R
I —— /7 _ N _ I/ _\ Agda Interactive
L1/ 7NN/ /721N
[l INCC /o _____ / Type :? for help.
]/
__/

The interactive mode is no longer supported. Don’t complain if it doesn’t work.
Checking LargeVeblen (/perso/ord/LargeVeblen.agda).

Finished LargeVeblen.

Main> phi Zeros

Suc Zero

Main> :typeOf LargeVeblen
Ord

Main>

16

6 Going beyond Veblen function with transfinitely many variables

We start with the large Veblen ordinal which is the least fixed point of the function oo — ¢(1,). Then we consider a function
F that enumerates the fixed points of & — ¢(1,). So we have LVO = F(0). The next fixed point F(1) is the limit of
LVO +1, 30(1LV0+1)7 90(190(1Lvo+1))7

Then we can consider the fixed points of the function F and define a function G that enumerates these fixed points, then a
function H that enumerates the fixed points of G, and so on.

This construction is similar to € which enumerates the fixed points of & — w®, { which enumerates the fixed points of £, which
enumerates the fixed points of (.

Like we have defined :

- po(a) = w?
- p1(a) =¢(a)
- p2(a) = ((a)

;z;/.e can define :

- g (@) = F(a)
- 91 (@) = G(a)
- 93 [a) = H(a)

With this notation we can write LVO = ¢ (0).

Then ¢} (3) can be written as a binary function ¢ («, 8) which can be generalized to finitely many variables like ¢ (a, 3,7)
and transfinitely many variables like ¢ (1,,).

Then we can consider the fixed points of the function o — ¢*(1,) and define a function g™ which enumerates these fixed
points.

The same way we can define ™+ ot+++

We can then define a new notation :

-Po=¢
_®1:g0+
S By = ot

There is another way to express this construction.

There are different conventions for ¢g(x), like w® or £,. We can write explicitely the convention chosen for ¢¢ by writing
"pr(e, B)” for " (8) with function f used for ¢y”. With this notation we have:

- 05(0,8) = £(8)

- of(a+1,8) = (14 B)th fixed point of the function 8 — ¢f(a, B)

- ¢r(A, B) = (1 + B)th common fixed point of the function 8 — ¢y(«, 8) for all a < A, if A is a limit ordinal.

(See http://www.cs.man.ac.uk/ hsimmons/ TEMP /OrdNotes.pdf)

Then we generalize the binary function ¢s(a, 3) to finitely many variables: for example (1,0,) = (1 + «)th common fixed
point of the function & — (&,0) (see https://en.wikipedia.org/wiki/Veblen_function) and to infinitely many variables with a
finite number of them different from 0, for example ¢¢(1,,).

Then we can define new ¢ functions by taking for ¢g the function § — ¢;(1¢) and define functions pg, sy, (1,) With 2 variables,
with finitely many variables and with transfinitely many variables.

To make a correspondence with my previous construction, if f is the function £ — w¢, then ¢ #(a, B) corresponds to what I wrote
9004(5)3 and CPEHgof(lg)(aaﬂ) to @g(ﬁ)

If we define the function S by S(f)(§) = ¢y (1l¢), then ey, (1) can be written ¢g(r). We can then consider ¢g(s(y)) and so on.
Given an ordinal o, we can iterate transfinitely "o times” the application of S to an initial function fy, for example fo(¢) = w®,
to obtain a function which I will write S%(fp). We can use this function to define a function ¢ga (s, which permits to construct
big ordinals.

7 Simmons notation

7.1 Presentation

Harold Simmons defined a notation (see http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/ordinal-notations.html
) based on fixed points enumeration which ”contains” Veblen functions and permits to go further.

17

He uses the lambda calculus formalism, in which f x represents the application of function f to x, and f x y = (f x) y the
application of function f to x which gives another function which is applied to y giving the final result. He uses tho notation
x +— y to represent the function which, when applied to x, gives y (instead of the traditional lambda calculus notation Az.y).
He also uses the notation w® for a +— w®.

f o g represents the composition of functions f and g : (f o g)a = f(ga).

f¢ is a canonical generalization of of exponentiation of a function to an ordinal power : f™ represents fo fo...o f with f
repeated n times, f¥C is the limit of ¢, f ¢, f(f ¢),..., f*T1¢ = f(f¥¢) and so on.

More precisely, Simmons gives the following definitions in http://www.cs.man.ac.uk/ hsimmons/TEMP /OrdNotes.pdf page 11 :

* g°C=¢
o g°"(=yg(97¢)
e ¢*¢ =V{g*¢|la < A} (if X is a limit ordinal, where V denotes the poinwise supremum)

and the following equivalent definitions in http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS /Fruitful.pdf page 4 :

e ¢°=id
o g*Tt =gog”
= V{g*a < A}

and he generalizes these definitions to higher order functions.

Then Simmons defines the following functions :

Fiz f(= f“(C+1) =limit of (+ 1, f(C+ 1), f(f(C+1)),...is the least fixed point of the function f which is strictly greater
than ¢, which means the least ordinal v satisfying f v = v and v > (.

Next = Fir w® = Fiz(a — w®) ; Next ¢ is the next e, after (.

[0)h = Fiz(a +— h™0)

[1]hg = Fiz(a — h*g0)

2)hgf = Fiz(a+— h*gf0)

.. and so on ...

In http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/OrdSlides.pdf Simmons gives another equivalent definition :
[0]h = Fiz(a — h*w)

[1lhg = Fiz(a — h%gw)

[2)hgf = Fiz(a — h%gfw)

Simmons also defines :
Veb f ¢ = (Fix f)'*¢0 is the (1 + ¢)-th fixed point of f
Enm h a = h't*0
Veb= Enmo Fiz
[0] = Fix o Enm
FizoVeb= Fix o Enmo Fiz = [0] o Fix
Fix o Veb* = [0]* o Fix
Al0] =
1] = Neact w = ¢
2] = [0]Next w = least v with v = Next'w = (y
| =
] =

Al
Al
A[3] = [1][0]Next w = least v with v = [0]" Next w =T
A[4] = [2][1][0]Nea:t w = least v with v = [1]¥[0]Next w = LV O (large Veblen ordinal)
.. and so on .

18

7.2 Implementation

Here is an implementation of the Simmons hierarchy in Haskell :

module Simmons where

—- Natural numbers
data Nat

= ZeroN

| SucN Nat

—— (Ordinals
data Ord

= Zero

| Suc Ord

| Lim (Nat -> 0rd)

—-- Ordinal corresponding to a given natural
ord0fNat ZeroN = Zero
ord0fNat (SucN n) = Suc (ordOfNat n)

-- omega
w = Lim ordOfNat

1lim0 s = Lim s
lim1l £ = 1im0 (\n -> f n x)
lim2 f lim1 (\n -> f n x)

X
X

—-- this does not work :
-— 1lim ZeroN s = Lim s
-- lim (SucN p) £ = \x > limp (\n -> f n x)

-- fra(x)
fpower0 f Zero x = x
fpower0 f (Suc a)
fpower0 £ (Lim s)

= f (fpowerO f a x)
Lim (\n -> fpower0 f (s n) x)

oM
non

fpower 1 f Zero x
fpower 1 f (Suc a) x = £ (fpower 1 f a x)
fpower 1 £ (Lim s) x = 1 (\n -> fpower 1 £ (s n) x)

]
»

-- fix f z = least fixed point of f which is > z
fix f z = fpower 1im0 f w (Suc z) -- Lim (\n -> fpowerO f (ordOfNat n) (Suc z))

-- cantor b a a+ wb

cantor Zero a = Suc a

cantor (Suc b) a = fix (cantor b) a

cantor (Lim s) a = Lim (\n -> cantor (s n) a)

-- expw a = w'a
expw a = cantor a Zero

-- next a = least epsilon_b > a
next = fix expw

-- [0]

simmonsO h = fix (\a -> fpower 1im0 h a Zero)

19

-- [1]
simmonsl h1l hO = fix (\a -> fpower liml hl a hO Zero)

-- [2]
simmons2 h2 hl hO = fix (\a -> fpower 1lim2 h2 a hl hO Zero)

-- Large Veblen ordinal
1lvo = simmons2 simmonsl simmonsO next w

Il 0 T T I O Y I Hugs 98: Based on the Haskell 98 standard
[11 [I O I Copyright (c) 1994-2005

[1==-11 —__1l World Wide Web: http://haskell.org/hugs

Il Il Bugs: http://hackage.haskell.org/trac/hugs
|l || Version: September 2006

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :7 for help

Hugs> :load simmons

Simmons> lvo

ERROR - Cannot find "show" function for:
*** Expression : 1lvo

*kx 0f type : Ord

Simmons>

7.3 Correspondence with Veblen functions

go is the next €, after 0 (or after w, or after any ordinal less than g9, so we have g = Neat 0 = Next w.
€1 is the next e, after eg, so we have 1 = Next g = Neat (Next 0) = Next?0 = Next (Next w) = Next?w.
g9 is the next e, after €1, so we have 5 = Next 1 = Next (Next (Next 0)) = Next30 = Next (Next (Next w)) = Next3w.

€, is the limit of €, €1, €9, It is the limit of Next'0, Next?0, Next?0, ... which is Next“0.
More generally, we have ¢, = ¢(1,a) = Next' 70 = Next! Tow.

Co = ¢(2,0) is the least fixed point of a — &, (greater than 0), so (o = Fiz(a — £,)0 = Fiz(a — Next'T20)0 = Fiz(a —
Next®0)0 (because the ”14” is ”absorbed” after a few iterations) = [0] Next 0. Since (p is also greater than w, it is also [0] Next w
according to a similar computation.

1 = ¢(2,1) is the next fixed point of a — &4, the least one which is strictly greater than (y, so (1 = Fiz(a — €4)(= Fiz(a —
Newxt®0)(y = [0]Next (o = [0]Next([0]Next 0) = ([0]Next)?0 = [0] Next([0]Next w) = ([0]Next)?w.

More generally, ¢, = ([0]Next) 0.

Similar computations give 19 = ¢(3,0) = [0]?Next 0 and n, = ([0]> Next) 0.

More generally, (1 + 3, a) = ([0]° Next)!+20 or ([0]° Next)' T w.

'y = ¢(1,0,0) is the least fixed point (greater than 0) of the function a — ¢(«,0) or a — (1 + «,0) (for the same reason
of ”absorbsion” of ”14” than previously), so Iy = Fiz(a — ¢(1 + «,0)0 = Fiz(a — ([0]*Next)(1 4+ 0)0)0 = Fiz(a
[0]*Next 0)0 = [1][0] Next O.

'y = ¢(1,0,1) is the next fixed point : T'y = Fiz(a — [0]*Next 0)Ty = [1][0]Next Ty = [1][0]Next ([1][0]Next 0) =
([1][0] N ext)20.

20

More generally, we have ¢(1,0,a) = ([1][0]Next)!T<0.

©(1,1,0) is the least fixed point (greater than 0) of the function o — ¢(1,0,a), so it is Fiz(a — ¢(1,0,a))0 = Fiz(a —
(1][O]Next)1+°‘0)0 = Fiz(a — ([1][0]Next)*0)0 (absorbsion of 14) = [0]([1][0] Next)O.

©(1,1,1) is the next fixed point Fiz(a — ([1][0]Next)*0)¢(1,1,0) = ([0]([1][0]Next)([0]([1][0]Next)0) = ([0]([1][0] Next))20.
More generally, ¢(1,1,«) = ([0]([1][0] Next)) 0.

©(1,2,0) is the least fixed point (greater than 0) of the function a +— (1,1, a), Fiz(a +— (1,1, a))0 = Fiz([0]([1][0]Next)+*0)0 =
Fiz(o = ([0]([1][0]Next))*0)0 = [0]([0]([1][0}Next))0 = [0]*([1][0] Next)0.

Like previously, ¢(1,2,«) is the (1 + a)-th fixed point of the previous function, which is ([0]2([1][0]Next))!+>0.

More generally, ¢(1, 8, a) = ([0]°([1][0] Next))T<0.

©(2,0,0) is the least fixed point (greater than 0) of the function 8 — (1, 3,0), which is Fiz(a — ¢(1,5,0))0 = Fiz(S —
(107 ([[0]Next)) +90)0 = Fiz(5 v+ 017 ([1][0] Next)0)0 = [1][0]([1][0]Next)0 = ([1][0))* Next 0.

The (1 + a)-th fixed point of the previous function is ¢ (2,0, «) = (([1][0])2Next)'+20.

The least fixed point of the function o — ¢(2,0,) is ©(2,1,0) = Fiz(a — ¢(2,0,a))0 = Fiz(a — (([1][0])2Next)(1 + a)0)0 =
Fiz(a — (([1][0])2Next)*0) = [0](([1][0])2Next)0 and its (1 + a)-th fixed point is ¢(2, 1, a) = ([0](([1][0])®?Next)) 0.

More generally, we have ¢(2, 3, a) = ([0]°(([1][0])2?Next))!*+<0.

The general formula with three variables (with v # 0) is ¢ (7, 8, @) = ([0]°(([1][0])Y Neat))*+<0.
In particular, we have (7,0, 0) = ([1][0])” Next0.

Using collapsing, we can write ¢(v, 8, @) = ¢4 () = pa15(a) = (- v+ B,a) = p(1+ Q-7+ B,a) = ([0]*7 P Next) o0 =
([012(([0]?)Y Neat)) 0 = ([0]°(([1][0]) Next)) T0 if we consider that [0]* = [1][0].

©(1,0,0,0) is the least fixed point of the function v — ¢(%,0,0), Fiz(y — ©(7,0,0))0 = Fiz(y — ([1][0])"Next 0)0 =
[1]([1][0]) Next 0 = [1]?[0] Next 0.

All of these computations could be done with w instead of 0 at the end of the formulas so we also have ¢(7, 3, a) = ([0]°(([1][0])Y Next))*
In a similar way, we can obtain the formula with 4 variables :

©(1,0,0,a) = ([1)2[0] Next)+0
©(1,0,1,0) = Fiz(a+ ([1]2[0]Next)*0)0 = [0]([1]*[0])0
¢(1,0,1,) = ([0]([1]*[0] Next)) 0
<p(1,07570é) = ([0]7([1]*[0] Neat))'T*0
©(1,1,0,0) = Fiz(a — ¢(1,0,a,0)]0 = Fiz(a — [0]%([1]?[0]Next)0]0 = [1][0]([1]*[0] Next)0
¢(1,1,0,a) = ([1][0]([1]*[0] Next))' >0
©0(1,1,1,0) = Fiz(a— ¢(1,1,0,a))0 = Fiz(a — ([1][0]([1]*[0] Next))*0)0 = [0]([1][0]([1]*[0] Next))0
e(L, 1,1, a) = ([0)([1] [0]([1]2[0]n6$t)))1+a0
¢(1,1,8,a) = ([01°([A][0)([1]*[0] Next))) T*0
¢(1,2,0,0) = Fiz(a = ¢(1,1,0,0))0 = Fiz(a > [0]*([1][0]([1]*[0]next))0)0 = [1][0]([1][0]([1]*[0] Next))0 = ([1][0])*([1]*[0] N ext)O
»(1,0,0,0) = [1]2[O]Next0
¢(1,1,0,0) = [1][0]([1]? [O}Neﬂ)o
¢(1,2,0,0) = ([1][0])*([1]*[0] Next)0
¢(1,7,0,0) = ([1][o])7([1]*[0]Next)o
e(1,7, 8,) = ([0]°(([1][0]) " ([1]*[0] Next))) 0
©(2,0,0,0) = Fiz(a — ¢(1,,0,0)]0 = Fiz(a — ([1][0])*([1]2[0]Next)0]0 = [1]([1][0])([1]?[0]Nexzt)0 = [1]2[0]([1]?[0]Next)0 =
([1]2[0])2 N ext0
©(6,0,0,0) = ([1]2[0])° Newt 0
The general formula with four variables is :
(5dv ,Bya) = ([0 (([][01)7 (([1]2[0])° Newt))) 20 = ([0]7(([1][0])7 (([1]?[0])° Newt))) +*w
and so on.

Using collapszing, we can write ¢(4,7, 8, a) = 3057%5(24) = pa2srar48(@) = Q%0+ Q- v+ B8,0) =1+ Q-6+ Q-y+
B,a) = ([0] -+t Next) 0 = ([0)7(([0])7 (([0)")° Next))) 0 = ((0]7(([1][0]) 7 (([1]*[0])* Next))) 20 if we consider that
0] = [1][0] and [0]*" = ([0]")* = ([1][0])* = [1]([1][0]) = [1]*[0].

The small Veblen ordinal is the limit of :

(1) = w,(1,0) = Next w,¢(1,0,0) = [1][0] Next w, p(1,0,0,0) = [1]2[0]Next w, ¢(1,0,0,0,0) = [1]3[0] Next w,
This limit is [1]“[0]Next w = [1]“[0]Next O.

21

Allowing variables at any finite or transfinite positions (which is equivalent to Schiitte brackets or Klammersymbols) gives
ordinals smaller than the large Veblen ordinal which is the least fixed point of the function o — ¢(1,). It is Fiz(a — ¢(1,))0 =
Fix(a — [1]*[0]Next 0)0 = [2][1][0] Next O

[2][1][0]Next O or [2][1][0] Next w.

The conversion rule from Schiitte Klammersymbol to Simmons notation are described by Simmons in his paper : http://www.cs.man.ac.u
NOTATIONS/FromBelow.pdf (Simmons also wrote other papers but it seems to me that they contain inaccuracies and maybe
even errors).

In summary :

Fiz fC= f(C+1)

Enm h a = htt0

Next = Fiz(a — w®)

[0]h = Fiz(a — h*0)

[1]hg = Fixz(a — h%g0)

a+ 1| NIt e TSP
V{i—ﬁ—l}_([l] [0]) ifi£0;[0]*ifi=0

o +1 ... as+1| ap+1 ag + 1
v{il—l—l ls+1:|_v{h-&-l}O[O]O'”O[O]Ov[is“rl}
where f o g is the composition of functions f and g : (fog)z = f (g x)

14+ar ... 14as| 1407 ... 14+a, .
SCh[1+i1 L 1y, | T P ov[lJril o1y, |of
f may be any function but it is usually o — w®.
f ¢ 14a; ... 14a,

0 1+4 ... 1+
. 1+a7 ... 1+
_SChLﬂ'l 1+@'Jf<
. 1+a7 ... 14+« .
(EnmoV[1+i1 1+is]oF2x)f(
(EanV[all_—:ﬂ0[0]0...0[0}0V[?;_—:ﬂoFix)fC
_ ap +1 as +1 .
= Enm((V [i1+1:| o[O]o...o[O}oV[is+1:|)(szf))C

o+ 1 as+1 .
=(V |:i11—|—1] o[O]o...o[O]oV{is+1])(szf))l+<0
If f = a— w®, then Fix f = Next and

¢ 14ar ... 14as) o+ 1 g+ 1 14+¢
f(O L4dy . 144, =(V il ol0]o...0[0]oV i1 YNext)! <0
Examples :
e(1+ 8, a)

(¢ 5)(“ ”5)

{5 + 1} V(Fiz(€ - wé)))1+20

— {64— 1})Next)!T20

[0]° Next)!+0

o(1+7,1+B,a)
= (£ = W) <g 14{5 1;7)

(@[ewo v |5 oriate - iy

— (v [5‘} 1} o[0]oV [’V‘z 1})Neat)l+oQ

22

= (([0]” o [0] o ([1][0]) ") Next)+0
= ([0]"*2(([1[o) 7 Next)) ' +20
Compare with the previously found formula :

if ¥ > 0,¢(y, 8, a) = ([0]°(([1][0]))* Next))* 0
and note the "round trip” 1+vy—=>~v+1—1+4+17.

e(1+0,14~,148,a)

et (@ 1+6 1+v 1+5
0
oo e e

— (v { N } 0oV P } F‘g 1})Next)+e0
= (([0)7 o 0] o ([1][0])**7 o [0])1+5)N€$t)1+°‘0

= ([0} + ([1][0])1“([0](([] [])1+5N€$t))))1+"0

= ([0]1+ﬁ(([1][0})1+7(([1]2[DH‘SNext)))H“O
because [0] is absorbed by the following operator (see http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS/FromBelow.pdf

p 33,6.7)
Compare with the previously mentioned formula :

(8,7, 8,) = ([0 (([1][0]) (([1]*[0])° Neat))) +0
The equality

¢ ¢ 14a1 ... 14 as _ ap +1 ag + 1 14+¢
(fn—>w)<0 L +dy . 14, (v i1 o[0]o...0[0]oV i1)Next)' <0

can be reformulated, distinguishing four cases :
o (6009 (§) = 00,0 =t

o (€ wb) (4 1+ a) —p(l+a,()=(V [a + 1] Newt)' €0 = ([0]* Next)+<0

0 1 1
¢ 1—|—a1 l+as ... 1+a,
(gHw§)<o 14y ... 1+¢S)
{0‘1 + 1] (‘;‘22 N 11> 0[0]o...0[0]0V [C;jﬂ)Neat) 0
= (([0]*r o [0] o ([1]72[0])+*2 0 [0] o ... o [0] o ([1]*[0]) T) Next) <0

(
=(([0]“al ° ([J2[0])+*2 o [0] o... 0 [0] o ([1]%[0]) T) Newt) ' +<0
= ([0 o ([1]2[0]) 192 oo ([1]%[0])) Neat) <0

The first separating [0] is combined with [0]*! giving [0]}*** and the other are absorbed.

¢ ¢ 1401 ... 14as e
o(§r—>w)<0 Lbdip .. 144, with 43 # 0

i1+1 is+1
= (1) [o])***1 o [0] 0. 0 [0 o ([1)[0]) <) Newt) +<0

= (A o)+ oo (1] [0])+ <) Neat) <0
The separating [0] are absorbed.

— (v [0.‘1 + 1] of0]o...0[0]0V {O‘ + 1])Next)+<0

We can see that the third case is contained in the fourth one if we remove the restriction i; # 0 because if i1 = 0 we have
([1]%[0]) et = [0]*+21 like in the third case.

For more information concerning the correspondence between Simmons notation and Schiitte Klammersymbols, see :
http://www.cs.man.ac.uk/ hsimmons/ORDINAL-NOTATIONS /FromBelow.pdf pages 28 - 34.

23

The Simmons notation can also be used to represent the notation going beyond Veblen functions that we saw previously.
. R . . 1 .
As we saw previously, the large Veblen ordinal is the least fixed point of the function a +— ¢(1,) or a + (& = w?) (a)' It is

Fiz(a— ¢(1,))0 = Fiz(a — [1]*[0]Next 0)0 = [2][1][0] Next 0.

Using collapsing, we can write it ¢(1g) = [1]2[0]Next 0. Compare with the previously obtained equality [0]% = ([0]%)2 =
([1][0)% = [1]([1][0]) = [1]?[0] which can be generalized to [0]*" = [1]*[0]. We can also write LVO = ¢ge(0) = [O]QQNext 0=
[1]%[0] Next 0 = [2][1][0]Next 0 with [1]? = [2][1].

The fixed points of this function a — (1,) are enumerated by the function F, so we have LVO = F(0). More generally, the
(1 + a-th fixed point of a + ¢(1,) is F(a) = ¢ (o) = ([2][1][0]Newt) +0.

Then the fixed points of F = ¢ are enumerated by G = ¢3. The least fixed point of F is G(0) = ¢5(0) = Fiz(a
([2][1][0] Next)1+20)0 = [0]([2][1][0] Next)0 (because of the absorbsion of ”1+47) and its (14 «)-th fixed point is G(a) = ¢35 (a) =
([0]([2][1][0] Newt)) 0.

Then the fixed points of G = ¢ are enumerated by H = ¢3. The least fixed point of H is H(0) = ¢1(0) = Fiz(a
([0]([2][1][0] Next)**+0)0 = [0]([0]([2][1][0]Next))0 = [0]2([2][1][0]Next)0 and its (1 + a)-th fixed point is H(a) = ¢ (a) =
(OP(2I[1][0]Next)) 2.

More generally, we have ¢, ,(0) = [0]*([2][1][0] Next)0 and ¢, (8) = ([0]*([2][1][0] Next))*T50.

Then we generalize the function ¢ to any number of variables :

¢t(a,B) = L (B)

©1(1,0,0) is the least fixed point of the function a — o™ (a, 0) = a + [0]*([2][1][0] Next)0. It is Fiz(a + [0]*([2][1][0]Next)0)0 =
[10)([2][1][0] Neat)o.

Compare with ¢(1,0,0) = [1][0] Next0.

More generally, like we found o(v, 8,a) = ([0]%(([1][0])Y Next))!T0, we have p* (v, 3,a) = ([0]°(([1][0]) ([2][1][0] Next))) 0.
Like we generalized the ¢ function to transfinitely many variables reaching all ordinals less than LVO = [2][1][0]Next 0, we
can generalize the T function to transfinitely many variables and reach all ordinals less than a new limit which we will call
LV O™ = [2][1][0]([2][1][0] Next)0 which is the least fixed point of a — [1]*[0]([2][1][0] N ext)0.

Then we can do the same with o™+ = ®3 and we shall get similar results with ([2][1][0])>Next, and generally with ®,,, getting
formulas with ([2][1][0])* Next.

The limit of Next 0, [0] Next 0, [1] [0] Next 0, [2] [1] [0] Next 0, [3] [2] [1] [0] Next 0, ..
or Next w,[0]Next w, [1][0]Next w, [2][1][0]Next w, [3][2][1][0] Nezt w, ...

is called the Bachmann-Howard ordinal (BHO).

It could be written [w...0lNext 0 or [w...0|Next w.

8 Rationalization of the Veblen functions

When we have defined the different notations, we have arbitrarily chosen some conventions, for example the limit of w,w®, w*”, ...
have been called £9. We could have called it €;. In this case, e, would have been the a-th fixed point of ¢ — w¢ instead of the
the (1 + «a)-th one. Also we chose to define ¢(0, o) = w®. We could have chosen to define ¢(0,«) = £4. The 714" which appear
in the correspondence between Simmons and Veblen notations may be due to the fact that the choices that have been made are
not the most logical.

We will define a rationalized variant of the Veblen notations which simplifies the correspondence with the Simmons notation :

o co=p(l,a)=¢cl,,=¢(0,1+a)
Ca =¢(2,0) =(lo =¢'(L,1+0a)
o = ¢(3:,0) =ni1a = ¢'(2, 1+ @)
Generally, p(1+ 8,a) = ¢’ (8,1 +)

Lo = ¢(1,0,0) = ¢'(1,0,1)
e Generally, if v # 0,¢0(7, 8,0) = ¢'(7, 8,1 + «)

e In a similar way, if v # 0 or 6 # 0, (5,7, 8, @) = ¢’'(8,7, 8,1 + a) and so on.

With this notation, the correspondence with Simmons notation becomes simpler, for example we have :

24

e ¢/, = Next®0 instead of ¢, = Next!T(

e ©'(B,a) = ([0)°Next)*0 instead of p(1 + 3,a) = ([0]° Next)!+0

o ¢'(v,B,a) = ((0)(([1][0])" Newt))*0 instead of (v, 8, e) = ([0]°(([1][0])" Next))'+*0

o ¢'(6,7, 8,) = ([0]°(([L][0])” (([1]*[0])* Next)))'+0 instead of ¢(8,7, 8,) = ([0]° (([1][0])” (([1]*[0])° Next)))' 0

It appears that the last variable (« in the previous examples) plays a different role from the other variables, so it could be more
logical to write for example gof;mﬁ () instead of ¢'(4,7, 8,) and to consider that § is at position 0, v at position 1 and § at
position 2. In this case, we see that the position corresponds to the exponent of [1] in the Simmons representation.

We can also use collapsing to represent the index list, writing for example :

o I'o =) 0(1) = pn(1)
e Ackermann ordinal = ¢} ;((1) = g2 (1)
e SVO = ¢q.(1)

This notation even permits writing ordinals that are out of range of Veblen notation like :

o LVO = pga(l)

hd 90/999(1)
e ...

9 RHSO notation

9.1 Basic principles

Like Simmons notation, the RHSO notation uses lambda calculus formalism.
The basic method consists in :

Start from 0
If we don’t see any regularity, take the successor (add 1)
If we see a regularity and we don’t have a notation for it, invent it and jump to the limit

If we see a regularity and we already have a notation for it, use it and jump to the limit.
The difficulty, which requires intelligence, is to see the regularities. It gives the following sequence :

e 0 : no regularity, take the successor

suc 0 : no regularity, take the successor

suc(suc 0) : regularity : suc repeatedly applied to 0. No notation, invent it : H f x = limit of x, f x, f (f x), ...
Hsuc 0 : no regularity, take the successor

suc(Hsue 0) : no regularity, take the successor

suc(suc(Hsuc 0)) : regularity : suc repeatedly applied to H suc 0, notation exists

Hsuc(Hsuc 0) : regularity : H suc repeatedly applied to 0, notation exists

H(Hsuc)0 : regularity : H repeatedly applied to suc, notation exists

HHsuc 0 : regularity (suc 0, ..., Hsuc 0, ... HHsuc 0, ... HH H suc 0, ...), invent notation Ry Hsuc 0 for the limit of this
sequence

Ry Hsuc 0 : no regularity, take the successor

suc(R1Hsuc 0)

suc(suc(RyHsuc 0))

Hsuc(Ry Hsuc 0)

suc(H suc(Ry Hsuc 0))

suc(suc(H suc(Ry Hsuc 0)))

H suc(H suc(Ry Hsuc 0))

H(Hsuc)(RyHsuc 0)

HH suc(RyHsuc 0)

Ry Hsuc(Ry Hsuc 0)

25

H(RyHsuc)0

suc(H (Ry Hsuc)0)

suc(suc(H(Ry Hsuc)0))
Hsuc(H(Ry Hsuc)0)

suc(suc(H suc(H (Ry Hsuc)0)))

H suc(H suc(H (R Hsuc)0)))
H(Hsuc)(H(R1 Hsuc)0)

H H suc(H (Rq Hsuc)0)

Ry Hsuc(H(RyHsuc)0)

suc(Ry Hsuc(H(Ry Hsuc)0))
suc(suc(Ry Hsuc(H (Ry Hsuc)0)))
Hsuc(Ry Hsuc(H(Ry Hsuc)0))
suc(H sue(Ry Hsuc(H(RyHsuc)0)))
suc(suc(H suc(Ry Hsuc(H (Ry Hsuc)0))))
Hsuc(H suc(Ry Hsuc(H(Ry Hsuc)0)))
H(Hsuc)(Ry Hsuc(H(RyHsuc)0))
H H suc(Ry Hsuc(H(Ry Hsuc)0))

R Hsuc(Ry Hsuc(H(Ry Hsuc)0))
H(RyHsuc)(H(RyHsuc)0)
H(H(RyHsuc))0

HH(RyHsuc)0

Ry H(RyHsuc)0

H(RyH)suc 0

R1H(R1H)suc 0

Ri(R1H)suc 0

HR{Hsuc0

RiHRHsuc 0 : invent notation RoR1H suc 0 = limit of suc 0, Ry Hsuc 0, RyHRHsuc 0, ...

R3sRs Ry Hsuc 0 : invent notation Rs. 1 Hsuc 0 and jump to limit
R, 1HsucO

RyR,,. . 1Hsuc 0 : invent notation R,11.. .1 Hsuc 0

To progress faster, we can use the following rule :

If we have found an ordinal «, and later another ordinal 3 of the form f(s(sz)), we may produce an ordinal v = f([suc — 5,0 —
z]a) where [suc — s,0 — z]a means the expression obtained by replacing suc by s and 0 by z in «.

For example :

e a= R Hsuc0

o = RiH(R;Hsuc)0

e s=RH

® z = suc

o fr=x0

o [suc — R1H,0 — sucla = R1H(R1H)suc

e v = f([suc = R1H,0 = sucla) = R1IH(R1H)suc 0

With the following rules :

e 0:—0
® SUC: X — SUC X

e H: f(fx)— > Hfx

26

Ri:ff—>Rif
Ry: fgfg— > Rafg
R3: fghfgh— > Rsfgh

éepl cay f(s(s2)) = f([suc — 5,0 = z]a)

we can produce the following sequence of ordinals :

:0:0

:suc0:suc0

s suc 1: suc (suc 0)

: H2: Hsuc 0

s suc 3 : suc (Hsuc 0)

s suc 4 : suc (suc (Hsuc 0))
: H5: Hsuc (Hsuc 0)

: H6 : H(Hsuc)0

: H7: HHsuc 0

: R18: RiHsuc0

: suc 9 : suc (RyHsuc 0)

: suc 10 : suc (suc (RyHsuc 0))

© 00 O UL i W N+~ O

e e el
T W N~ O

: R114: Ry(RyH)suc 0

—_
[op

—
IN]

: R216 : RoR1Hsuc 0

The rules Ry, Ro, R, ... may be replaced by Hor Replif fl ... fn ... fl ... fnisreformulated in < fi, ..., fr, > (..(< f1, ey fro > I)...

with < fl,...,fn >g=9g flfn :

:0:0

:suc 0 : suc O

: suc 1 : suc (suc 0)

:H2: HsucO

: suc 3 : suc (H suc 0)

: suc 4 : suc (suc (H suc 0))

© 00 J O O = W N+~ O

—
O

: suc 9 : suc (H <H> I suc 0)

— = =
W N =

: Repl 9 12
: Repl 9 13
: Repl 3 14
16 : Repl 9 15

—_
>~

—
ot

More formally, the RHSO notation uses lambda calculus with De Bruijn indexes. A.x is written [x] and variables are written *
., or e, 00 eee .. forexample ..

K3k kokok
5 .

CI = CTI is defined by CI x £ = f x.

CI x = <x>

: Repl 9 11[suc— > suc,0— > Ry Hsuc 0] : Ry Hsuc (Ry1Hsuc 0)
: Repl 9 12[suc— > RyHsuc,0— > 0] : Ry H(R1Hsuc)0
: Repl 9 13[suc— > R1H,0— > suc] : RyH(Ry1H)suc 0

: Repl 9 15[suc— > R1,0— > H]: RiHR;Hsuc 0

: Repl 3 5 [suc->suc,0->H suc 0] : H suc (H suc 0)

: Repl 3 6 [suc->H suc,0->0] : H (H suc) 0

: Repl 3 7 [suc->H,0->suc] : H H suc 0 = <H> (<H> I) suc 0
: Repl 3 8 [suc-><H>,0->I] : H <H> I suc 0

: suc 10 : suc (suc (H <H> I suc 0))

: Repl 9 10 [suc->suc,0->H <H> I suc 0] : H <H> I suc (H <H> I suc 0)

suc->H <H>: I'suc,0->0] : H <H>1 (H <H> Isuc) 0

suc->H <H> L[,0->suc] : H <H>1 (H <H>I) suc 0 = <H <H> I> (<H <H> I> 1) suc 0
suc-><H <H>I>,0->I] : H <H <H> I>Tsuc 0 = [H <*> 1] ([H <*> 1] H) suc 0
suc->[H <*> 1],0->H] : H <H> I [H <*> I] H suc 0

=[H<*>TH[MH<*>I Hsuc 0= <[H <*>I,H> (<[H <*> 1], H> I) suc 0

17 : Repl 3 16 [suc-><[H <*> I|,H>,0->I] : H <[H <*> I}, H> I suc 0

27

)

<x1,...,xn> f = f x1 ... xn

tuple n f x1 ... xn = f <x1,...,xn>

tuple 0 = <I>

tuple (n+1) f x = tuple n [£ (insert x *)]
with insert x a f = a (f x)

0fx=x
(n+1) fx=f (rn f x)
(lim g) f x = 1lim [r * f x]

H R

R

=]

f x represents the limit of x, f x, £ (f %),
fx=rwifx

=]

Ry =[H < o> I| =tuple 1[H o I

Ry = [[H < oo, 0 > []] = tuple 2[H o I

R =[[[H < eee, 00 0> ||| =tuple 3[H o]

R,, = tuple n[H o I]

Rn.,.l = Rn e Rl

Sn.o1= [S.ﬂn =< R,,..., Ry >

R, 1= SnII

[Se.1]0=1T

[Se..1](n + 1) = insert(tuple(n + 1)[H o I])([Se...1]n)

Lf=1im f 0, £ 1,

Lfx=LIf*x]

H= [[L [r * **x *xx]]]

or

LO = 1lim £ O, £ 1,
Lnf=tuplen [LO [*x (£ %) 1]
Ln=1[tuplen [LO [#* (kxx %) 11]
L = [[tuple ** [LO [#* (kxx %) 11]

= \n \f (tuple n \a (LO \i (a (£ i))))

To represent the replacement [suc — s,0 — z| we can represent ordinals by ordinal functions which, when applied to suc and
0, give the considered ordinal. For example, Ry Hsuc 0 is represented by the ordinal function s + 2z — Ry Hsz, Ry H(R; Hsuc)0
by s — 2z +— Ri{H(R1Hs)z. From these ordinals, with the replacement [suc — R;H,0 — suc] we can produce a new ordinal
represented by s — z — ((s — z — RiHsz)(R1H)sz) = s — z — RiH(R1H)sz) which, when applied to suc and 0, gives
R1H(RyH)suc 0.

Operations can be represented with replacements :

e a+3=[0—=0a]8

a- B =[suc — [®+ a]]8 = [suc— > [[0 — eo]a]]3

a? = [suc — [8-a],0 = 1]8 = [suc — [[suc — [[0 — o] o e8]]a], 0 — suc 0]
w® = [suc = [suc = Hsucl,0 = suc 0la = [suc — H,0 — sucja 0

g0% = [suc — R1H,0 — sucla0

€q = [suc = R1,0 = H](1 + a)suc 0;1 + a = [0 = suc O]a

9.2 Correspondence with other notations

suc0=0+1=1

suc (suc0)=1+1=2
Hsuc0=w

suc (Hsuc 0) =w +1

Hsuc (H suc0) =w+w=w-2
H(Hsuc) 0 =w-w = w?

28

HHsuc 0 =w®

Ry Hsuc 0 = limit of suc 0, Hsuc 0, HHsuc 0, HHHsuc 0,... =¢o = ¢(1,0) = ¢/(0,1) = Next w

suc(RyHsuc 0) =¢gp + 1

RiHsuc(R1Hsuc 0) =¢eg+e9=¢p -2

RiH(RyHsuc)) = &g - €9 = €0

R1H(R1H)suc 0 = gp®°

R\ H(R1H)(R H)suc 0) = go=°°

Ri(RiH)suc 0 = g1 = ¢(1,1) = ¢'(0,2) = Next(Next w) (note again that the correspondence is clearer with the
rationalized function ¢’

. . . . € . . . eg+1
We have previously seen that e is the limit of g, 0%, 0% °,. .. and is also the limit of g 4+ 1, w0t w*™° . and we have

proved the equivalence of these two fundamental sequences. We have seen that the first fundamental sequence is equivalent to
w,0%,0%°", ..., so we proved the equivalence of the two fundamental sequences by proving that for any n, we have :
w0 t] 0¥
ww: — E(E)b
We will now see how we can prove it using RHSO notation.
First we will write the two sides of this equality using RHSO notation :

We will use the notation X ... X for X repeated n times.

e ¢ =R Hsuc0

o g0+ 1 = suc(RyHsuc 0)

o Wl =[suc — H,0 — suc](suc(RyHsuc 0))0 = H(RyHHsuc)0 = H(Ry Hsuc)0
o w" = H(R{HH)suc 0 = H(RyH)suc 0

u50+1

o w¥ =H(R1H)Hsuc 0
w0+l

o W’ =H(R1H)HHsuc 0

[]
w“"so

o w” =H(RH)H.. Hsuc0

e w=HsucO
e ¢y = [suc = R1H,0 — sucjw0 = H(R1H)suc 0
. ESE = H(R H)(R1H)suc 0

ew

o & = H(RyH)(RiH)(RyH)suc 0
. 535 =H(RH)...(RH)(RH)suc 0

We will now prove the equality H(R{H)H ... Hsuc 0 = H(R1H) ... (R1H)(R1H)suc 0 for any n by induction.

For n = 0, the equality is trivial : H(RyH)suc 0 = H(R;H)suc 0.

We will now suppose H(R1H)H ... Hsuc 0 = H(R1H) ... (R1H)(R1H)suc 0 for a given n and prove it forn 4+ 1 :
H(R\H)H...HHsuc 0 = H(R\H)...(R\H)(R,H)(RiH)suc 0

By elevating w at the power of each side of this equality, we get :
[suc = H,0 — suc|(H(RyH)H ...Hsuc 0)0 = [suc - H,0 — suc|(H(R1H) ... (R1H)(R1H)suc 0)0
(1) HRyH)H...HHsuc 0= H(R H)...(RiH)(Ri1H)Hsuc 0

We also have :
H(R1H)...(RiH)suc 0= H(R1H)...(Ri1H)suc(suc 0)
which corresponds to the RHSO notation for :
eo% 0%
ey =1l+¢;
by absorpsion of ”1+” and "suc”.

29

Now we elevate g to the power of each side of this equality, which gives :

[suc = R1H,0 — suc|(H(R1H)...(Ri1H)suc 0)0 = [suc - R1H,0 — suc|(H(R1H) ... (R1H)suc(suc 0))0
H(RlH) . (RlH)(RlH)SUC 0= H(RlH) N (RlH)(R1H>(R1HSUC)O

Then we elevate w to the power of each side of this equality :

[suc = H,0 — suc|(H(R1H)...(R1H)(R1H)suc 0)0 = [suc — H,0 — suc|(H(R1H)...(RiH)(R1H)(Ry1Hsuc)0)0
H(R1H)...(RiH)(RiH)Hsuc0=H(R1H)...(RiH)(RiH)(RiHH)suc 0

which can be simplified to :

H(RlH) e (RlH)(RlH)HS’U,C 0= H(RlH) e (RlH)(RlH)(RlH)SUC 0

Noting that the left side of this last equality is the same as the right side of (1), we get by transitivity of equality, equating the
left side of (1) with the right side of the last equality :
H(RH)H...HHsuc0=H(R1H)...(RiH)(RH)(R1H)suc0

which corresponds to the equality we wanted to prove for n+1.

Then the correspondence continues with :

Ri(R1(R1H))suc 0 =e9 = ¢(1,2) = ¢'(0,3) = Next(Next(Next w))
HR1Hsuc 0 =¢, = ¢p(l,w) = ¢'(0,w) = Next“w

RiHR 1 Hsuc 0 =g,

R{HR{HR{Hsuc 0 = Ee.y

RoR1Hsuc 0=y = ¢(2,0) = ¢/'(1,1) = [0]Next w

The next step is ¢; which is the next fixed point of the function « +— &4, the limit of (o + 1,e¢)41,82., 415+ Ea IS [suc —
R1,0 = H](1+ a)suc 0, or [suc = Ry1,0 = H]a suc 0 if @ > w by absorbsion of 714”. This is the result of replacing suc by R;
and 0 by H in « and applying the result to suc and 0. So by iterating this transformation we get that (i is the limit of :

Co + 1 = suc(Re Ry Hsuc 0)
Rl(RgRlHRlH)SUC 0= Rl(RgRlH)suc 0
Rl(RgRlH)RlHSUC 0
Rl(RleH)RlHRlHSUC 0

In the previous correnspondence formulas, we can see a correspondence between RHS0 and Simmons notations :

Ry + [0]

Ry <> Next

H+w

suc 0 at the end of the RHSO notation

If we apply this correspondence to ¢; = [0]Next([0]Next w) (see ”Simmons notation / Correspondence with Veblen functions”)
we get (1 = RoRi(RoR1H)suc 0.

This is the limit of :

e Ri(RoR1H)suc0
L4 Rl(RgRlH)Rl(RQRlH)SUC 0
L4 R1(RQRlH)Rl(RgRlH)Rl(RQRlH)SUC 0

e ...
Compare with what we found previously :

Co + 1 = suc(Re Ry Hsuc 0)
Rl(RgRlHRlH)SUC 0= Rl(RgRlH)suc 0
Rl(RgRlH)RlHSUC 0
Rl(RgRlH)RlHRlHSUC 0

30

and with the previously proven equality :

H(RiH)H...Hsuc 0= H(R1H)...(RiH)(R1H)suc 0

which could also be written :

H(R\H)H...Hsuc 0= H(R{H)(R,H)...(R1H)suc 0

There is a similar equality :

R1 (RQRQH)RlH PN RlHSUC 0= R1 (RgRlH)R1<R2R1H) PN Rl(RgRlH)SUC 0

which proves the equivalence of the two fundamental sequences.

We saw that (; is the limit (or least upper bound) of {y + 1,550“,55(0“, But we have ¢y 11 = (g + €¢,+1 because (p is
"absorbed” by e¢,41, 80 €c¢ 11 = E¢otec,yq s and similarily €eepyrr = ECotecotecypn? and so on.

So (1 is also the limit of 1,e¢,41,E¢o+ec, 415 - -

We start with 1 because at each step, « is replaced by e¢,+q, the initial value of the sequence having no importance for its limit.
Now let us write the RHSO representations of the values of this sequence, using the formula €, = [suc — R1,0 — H|(1+ «a)suc 0:

o 1 =5suc0

o (o =RaR1HsucO

e (o +1=suc(ReRiHsuc0)

® E¢o4+1 = Rl(RQRlHRlH)SUC 0= R1(R2R1H)SUC 0

L CO + ECo+1 = Rl(RgRlH)SUC (RQRlHSUC 0)

L4 E<0+540+1 = R1(R2R1H)R1(R2R1HR1H)SUC 0= Rl(RgRlH)Rl(RQRlH)SUC 0

e ...
We see that the limit of this sequence is ReR;(R2R1 H)suc 0.

So we can go on with our correspondences :

e RyRi(RaR1H)suc 0=¢ = 9(2,1) = ¢'(1,2) = [0]Next([0]Next w)

e H(RoRy)Hsuc 0 = (,

(] RgRlH(RgRl)HSUC 0= CCO

e Ry(RaR1)Hsuc 0 =9 = ¢(3,0) = ¢'(2,1) = [0]([0] Next)w

e HRyR Hsuc 0= p(w,0) = ¢'(w,1)

e RIHRyRiHsuc 0= 90(6070) = 90(410())’) =@ (507) = /(/(0’ 1)71)

o RyRyHRy Ry Hsuce 0= ¢(Co,0) = (9(2,0),0) = ¢'(Co, 1) = ¢'(¢'(1,1),1)
e RsRyR Hsuc0=T¢9=¢(1,0,0) =¢'(1,0,1) =[1][|Next w

We may then extend our correspondence rule :

R3 < [1]

Ry < [0]

R < Next

H+w

suc 0 at the end of the RHSO notation

It is likely that this correspondence can be generalized in a simple and logical way, and it seems to me that the simpler
generalization is :

R7z+2 A4 [n]

R1 <> Next

H+w

suc 0 at the end of the RHSO notation

I will call it the ”Simmons - RHSO correspondence conjecture”.

Then, if the correspondence conjecture is true, the correspondence goes on with :

e RsRyRyHsuc 0=T¢=¢(1,0,0) = ¢'(1,0,1) = [1][0]Nexzt w

31

e R3(R3Ra)R1Hsuc 0= (1,0,0,0) = ¢'(1,0,0,1) = [1]([1][0]) Next 0 (Note that in the ¢ and ¢’ functions, the last variable
plays a different role than the others, as mentioned previously, so the most logical representation should probably be
©1.0,0(1) where the first 1 should be considered at position 2 and not 3, in this case its position corresponds to the number
of occurences (or the exponent) of Rs and [1])

HR3RyR1Hsuc 0 = SVO = [1]¥[0]Next w

RyR3RoR1Hsuc 0 = LVO = [2][1][0] Next w

R, 1Hsuc 0= BHO

Note the importance of using logical notations to make correct conjectures : if, instead of ', we use the less logical function ¢,
we have the correspondence :

e RiHsuc 0=¢p=¢(1,0)
e RoR1Hsuc 0= ¢y = ¢(2,0)

and we could think that it continues with :

e R3RyRy1Hsuc 0=y = ¢(3,0)
e R, 1Hsuc0=pw,0)

Like with the Veblen functions, we can use collapsing with RHSO notation, writing for example :

Lo =¢1,0(0) = ¢ o(1) = ()OQ(O) ©6n(1) = [0]?Next w = [1][0]Next w = (Ry)*RyHsuc 0 = R3Ry Ry Hsuc 0
which gives (Ry) = R3Rs

to be compared with [0]* = [1][0].

Iy is also the limit of the following sequence :

o (o =¢1(1) = [0]Next w = ReR1Hsuc 0
. ¥, (1) Ly (1) = [0]OINeet “ Neat w = (Rp)f2fHsue ORy Hsue 0 = Ry Ry H Ry Ry Hsuc 0

(1) = 0] “Newt w Negt o = Ry Ry H Ry Ry HRo Ry Hsuc 0

* Py L™

This limit is R3RoR1H suc 0.

9.3 Going further with RHSO notation and collapsing

The Bachmann-Howard ordinal (BHO) is the limit of Ry H suc 0, Ro Ry Hsuc 0, RgRoR1 Hsuc 0, ... which we will write R, 1 H suc 0.
We can go on ascending ordinals after BHO :

BHO =R, 1HsucO

suc(Ry,.. 1Hsuc 0)

R, 1Hsuc (Ry. 1Hsuc 0)

R, 1H(R,. 1Hsuc)0

R, 1H(R, 1H)suc0

Ri(R,,. 1H)suc 0

R, 1(R,. . 1H)suc0

HR, 1HsucO

RoR,, 1Hsuc 0

R3R2Rw___1HSUC 0

R, oR., 1Hsuc 0 which we will write R,,.o. 1 Hsuc 0
R, 3R, R, 1Hsuc 0 which we will write R,,.5.. 1 Hsuc 0
R, 1HsucO

Rey. . 1Hsuc 0 = Rr,Hsuc 0..1Hsuc 0

Then we can take the least fixed point of the function & — R,,. 1Hsuc 0 which we can also write [R,. 1 Hsuc 0]. This fixed point
is H[R,. 1 Hsuc 0]0 which we may also write R} Hsuc 0 if we define Rlz xow3 = H[R,. 1712223])0. Then the ascension goes on
with :

e H[R,. 1Hsuc0]0 = RlHsuc0

32

RoR}H suc 0

R3RyR}Hsuc 0

R, oRIHsuc0

H|[R,o. oRIHsuc 0]0 = RIRIHsuc 0 = R} | Hsuc 0 with Riz 227324 = H[Re. 2717273740
RIRIRIHsuc 0= R} |HsucO

Rl Hsuc0

H[R! |Hsuc 0]0 = R?Hsuc 0 with R2z120w3 = H[RL | 112223]0
R3Hsuc 0

RYHsuc 0

H[R}Hsuc 0]0 = R}’OHsuc 0 with R}’Ol‘l.’L'Ql'g = H[R}z1x223)0
R}’O’OHsuc 0

We can number the positions in the list of upper indices of R or introduce collapsing to write

e R} = R{° = R}
1,0 .
° R17 — R}l — R%l _ R£12
1,0,0 . 2
° R17 0 R%Q _ R%l _ R?

We also need a notation for uncountable ordinals. We can take €2 = w; the least uncountable ordinal and use a notation similar
to the one we used for countable ordinals, replacing H by H; when w is replaced by Q) = wq, writing for example :

e QO =w; = HisucO
02 = Hy(Hysuc)0
QY =HH;suc 0

0% = HyH;suc 0
QQQ = H1H1H18UC 0

Then we can go on ascending ordinals by using greater and greater uncountable ordinals as upper indices of R, for example :
RH[RIHlsuc O]OHSUC 0
1

10 Extending Simmons notation
The limit of the Simmons notation is the limit of :

e Next w =g

[0]Next w = ¢
[1][0]Next w =T
[2][1][0]Next w = LVO
[3][2][1][0] Next w

which is BHO, the Bachmann-Howard ordinal.
Using RHSO notation, it corresponds to :

e RiHsuc0=¢
RgRlHSUC 0= Co
R3R2R1HSUC 0= Fo
R4R3R2R1H§UC 0=LVO
R5R4R3R2R1HSUC 0

33

which can be written R, 1Hsuc 0 in RHSO notation.

And we just saw that the RHSO notation goes much further.

So, using the correspondence, we can entend the Simmons notation in a similar way the RHSO extends beyond BHO.
Using similar notations, we can write [w...0]Neztw for the BHO.

Then we can go on :

R, 1Hsuc0 =R, oR1Hsuc0=|w...0]Nextw

RoR,, .1Hsuc 0 = Ry(Ry,. 2R1)Hsuc 0= [0]([w...0]Next)w

R3RoR,, .1Hsuc 0 = R3Ry(Ry. 2R1)Hsuc 0 = [1][0]([w...0]Next)w

Ryo. 1Hsuc 0=R, osR, 1Hsuc 0= R, 2(R,. 2R1)Hsuc0=[w...0](Jw...0|Next)w
HR, 2R1Hsuc0=|w...0“Next w

RiHR, osR1Hsuc0=|w...0]°*° Next w

RsR, 2R1Hsuc 0= Fiz(a— [w...0]*Next w)w = [1][w...0]|Next w = [w+1...0]Next w
Rw.2+1m1HSUC 0

= Rng_HQRw“_lHSUC 0

- Rng_NQ(Rw“_gRl)HSUC 0

=[1]jw...0)([w...0]Next)w

= Fiz(a— [w...0]%(w...0]Next)w)w

= Fiz(a— [w...0]*Nextw)w (absorbsion of [w...0])

=[1][w...0]Next w

=[w+1...0]Next w

11 Ordinal trees

Ordinal can also be represented by trees. An example of such a representation is given in :

http://www.madore.org/ david/math/ordtrees.pdf .

In this representation, the order on finite rooted trees is recursively defined as follows : A < B if and only if one of this conditions
is true :

e There is some mmediate subtree B’ of B such that A < B’.
e Every child A’ of A satisfies A’ < B and the list of children of A is lexicographically less than the list of children of B for
the order < with the leftmost children having the most weight.

Trees can also be represented by parenthesized expressions, for example :

*0=10(

e 1=(0)

e 2=((0)

e w=(00)

e w+1=((00))

e w-2=(000)

e w-3= (00N

o w?=(0(00))

o w+w=(000))

o w?-2=(((0(0))

o w?-3= (000N
o w? = (00N

e w’ =((0)0)

e 0 =((00)0))

e o =¢1(0) = (000)

e &1 =¢1(1) = (00(0))
e 22 =¢1(2) = (00(0))
* co = w1(w) = (00(00))
* 25, = (00000))

34

Another example of tree representation is Takeuti ordinal diagrams, see :
https://projecteuclid.org/download /pdf_1/euclid.jmsj/1261153819 .

12 An application of ordinals : defining large numbers using the Fast Growing
Hierarchy

The Fast Growing Hierarchy is a family of fast growing functions indexed by ordinals f, which, when applied to a number, give
a much greater one, allowing to produce huge numbers.
It is traditionally defined as follows :

* fo(n)=n+1
¢ far1(n) = fa"(n)

¢ fa(n) = fam)(n) if v is a limit ordinal, where a[n] denotes the n-th element of the fundamental sequence assigned to .
The first functions of this hierarchy are :

o fo(n)=n+1=sucn
o fi(n) =suc*(n)=n-2
o () = [o-2"(n) =n-2"

But there is a problem with this definition, because the value of f,(n) depends of the fundamental sequence chosen for « if it
is a limit ordinal. Let us consider for example f,(2). If we take the canonical fundamental sequence w[n] = n, then we get
fu(2) = fo(2) = f2(2) = 2-22 = 8. But wln] = n+1 is also a valid fundamental sequence for w. Taking this fundamnetal
sequence gives f,(2) = fu2(2) = f3(2) = [0 - 2°]3(2) = 2048.

In fact, the notation a[n] is not rigorous because there are several possible fundamental sequences for a given ordinal «. Instead
of writing a[n] = F(n) it would be more rigorous to write a« = limF. One cannot write w[n] = n and w[n] = n 4+ 1 because this
implies n = n+1, but there is no problem writing w = lim(n — n) = lim(n — n + 1).

So, if we want to define rigorously the Fast Growing Hierarchy, we need to index the functions not by ordinals but by something
which look likes ordinals but which are considered as different if the fundamental sequences are differents. These mathematical
objects originally due to Bachmann are called ”tree ordinals” (do not confuse with ”ordinal trees” previously seen).

13 Tree ordinals

Definitions of tree ordinals can be found in :

e https://www.youtube.com/watch?v=RmuASZS02s8&t=9s&index=41&list=PL3A50BBIC34AB36B3
e http://www.iam.unibe.ch/ltgpub/2011/fabl1.pdf
e Proof and system-reliability

A tree ordinal a belongs to the tree ordinal class 2, (n € N) if either :

e a=20
e a = a’ + 1 for some tree ordinal a’ belonging to the tree ordinal class £2,,
e a is a function from Q to 2, for some k € N with k£ < n. In this case, we will say that a is a limit tree ordinal.

Let us first consider €y. The third case cannot apply (k € N and k < 0), so the definition of g is given by the first two cases,
which correspond to the inductive definition of the natural numbers, so)y may be identified to N or w.

Next, £2; also includes all natural numbers, and also functions that, to a natural number, associates an element of €21, or sequences
of elements of Q. For example, the identity function a[k] = k is an element of Q; called wy. The function blk] = k+1 is also
an element of 1, but these two tree ordinals are considered as different tree ordinals, because the functions or sequences are
different, even if the associated ordinal (the ordinal which has the corresponding fundamental sequence) is the same for both, the

35

ordinal w. So §2; can be seen as the class of countable ordinals associated with the choice of a particular fundamental sequence
for limit ordinals.

Then it goes on with Qg which includes £, 27, and functions from Q; to s, like for example w; defined by wi(a) = a where
a € 4, and so on.

There is a correspondence between tree ordinals and ordinals : if we ignore the choice of a particular fundamental sequence of
a tree ordinal, we get an ordinal. To any tree ordinal a, we can associate a corresponding ordinal oo = |a| obtained by ignoring
the choice of particular fundamental sequences, and defined by :

e 0/=0
e la+1|=la|+1
e |a| = supla[b]| if a is a function from . to Q.

or equivalently
la] = supp<af[b] + 1}

We can define arithmetical operations on tree ordinals in a way similar to the previously seen definitions for ordinals, replacing
lim(f) by f because the ordinal tree is identified with its fundamental sequence or function.

Using tree ordinals, we can define rigorously the Fast Growing Hierarchy f,(n) where a € Qy :

e fo(n)=n+1
 far1(n) = fa"(n)

o fa(n) = fam)(n) if @ is a limit tree ordinal, where a[n] denotes the result of the application of the function a to the integer

14 Using tree ordinals to define ordinals

Let us define a hierarchy of functions Fj,(a,b) where n € Nya € Q41 and b € Q,,, which is an extension of the Fast Growing
Hierarchy : for n = 0, it corresponds to the Fast Growing Hierarchy : Fy(a,b) = fo(b) with a € Q1 and b€ Qp =N, or :

o Fo(0,b) =b+1
i FO(a +1,b) = [FO(a7 .)]b(b)
e Fy(a,b) = Fy(alb],b) if a is a limit tree ordinal

We generalize this definition for n > 0 :

F,(0,b) =b+1

F,(a+1,b) = [F,(a,e)]®(b)

(Fn(a,b))[c] = Fn(a[c],b) if a is a function from Qf to Q41 with £ <n
(Fr(a,b

Fn(7

where the exponentiation of a function to a tree ordinal power is defined by :

o fa) =
o fiHl= (*(a))
e (f%a))[c] = fbl(a) if b is a limit tree ordinal

)) = F,(a[b],b) if a is a function from €, to Q41

This hierarchy of functions F),(a,b) may be used to define ordinals as follows :

. Fl((),b) =b+1 = suc(b)

o F1(1,b) =suc’(b) =b+b=>b-2

o F1(2,b)=0b-2°

o |F1(2,wp)| = |wp 2| =w 2% =w-w = w?

o [F1(2,F1(2,wp)) = |(wp - 290) - 290270 | = 2 . 2% = 2. 2Ww = 2 . (29) = w? - W = WY =¥

[]
=
=
Nl

&
(=}
=

I
>
A

,0)]“0 (wo)| = sup|[F1(2,)]k (wy)| = sup|[F1(2, ®)]*(wo)| = sup(w) =0
|F1(2,F1(3,w0))| =g0- 2% =¢go?

36

o [IF(2 (R (3,0))| = 20 - 20" = o

IFy(3, Fy(3,w0))] = sup{eo” } =1

Fy)] = G = 9(2,0) = (1,1

L3, Fy(4,w0))] = suplGo’ } = econs

A R =suple 1 =G= 92 1) =¢/(1,2)

By (5,0)] = 10 = 9(3,0) = ¢/(2,1)

| F1(wo,wo)| = ¢u(0)
(
(

|Fi (w1 +1,wo)| =T
|F1 F (3,&}1),(&10” = BHO

15 Ordinal collapsing functions

Ordinal collapsing functions are functions that use uncountable ordinals to define countable ordinals.
There are different ways to define ordinal collapsing functions. Some constructions we have already seen can be considered as
some kind of ordinal collapsing functions, for example :

o pl0,0.509) = gl o) = (€2 5) (7] §) =pl@ a5+

® ©0,6,4(0) = Pa2.a+0.5+4(6)

o 0(7,8,0) = ¢y 5(@) = paqis(@) = p(Qy+8,a) = p(1+Q-v+5,a) = (017 Next)' 0 = ([0]°(([0]°)" Next)) 0 =
(017 (([1][0])” Neat)) 0 with [0]* = [1][0]

* ¢(0.7,8,0) = 57,5(0) = P2 510445(0) = P9+ Qy+8,a) = (140704 Q-7+,) = ([0 192 SHEVHINext) 0 =

(012 (([o])7 (([0]*)° Neat))) 0 = ([0]7 (([1][0]) (([1]*[0])° Next)))+*0 with [0] = [1][0] and [0} = ([0]?)* = ([1][0])" =

(o)) = (1[0

¢(1a) = [1]°[0] Neat 0.

LVO = ¢qa(0) = [0]2" Next 0 = [1]2[0]Neat 0 = [2][1][0] Next 0 with [1]2 = [2][1]

Iy = <P’1,0(1) = 9022(1)

Ackermann ordinal = ¢ ; 5(1) = ¢ (1)

SVO = ¢q.(1)

LVO = pga(l)

(plgszﬂ(l)

Lo = ¢1,0(0) = ¢ o(1) = pa(0) = po(1) = [0]*Newxt w = [1][0]Next w = (R2)*R1Hsuc 0 = R3Ra Ry Hsuc 0

(R2)® = R3Ry

0] = [1)[0].

There are different ways to define ordinal collapsing functions.

First, we can consider an ordinal collapsing function as an extension of a given ordinal function (a function that, to any ordinal,
associates an ordinal), this function being extended by adding a symbol Q which can be seen as a fixed point constructor.
Suppose we define a function 1), for example ¥ (a) = w®.

This function has the following property :

Yla+p) =0t =w W =y(a) -’

With this function, we can define ¢(0) = w® = 1,7(1) = w' = w, Y (w) = w*,P(w*¥) = w*", The limit of this sequence is £o.
We would like to reach this limit and go beyond. For this, we will introduce a symbol 2 which generates fixed points.

For example, ¥(Q) = sup{0,(0),4(¥(0)),...}. So we have ¢)(2) = 9. We can then go further with ¢)(Q+ 1) = &¢ - w and more
generally ¥(2 + «) = ¥(Q) - w*. Then we have ¥(2-2) = Y(Q + Q) = sup{0,¥(Q + 0) = €0, Y(Q+ o) =0 wW§ =¢€0 &0 =
g0, V(Q+¢e0?) =g weo” = eoteo® — wEOQ,qp(Q + wsoz) = w“’EOQ, ...} =¢€1, and so on.

Intuitively, an expression consisting in ¢ applied to something which contains {2 means something like the least fixed point of the
function whose variable takes place of the last 2 of the expression and whose result is the whole expression, with some conditions

37

concerning the form of the expression, for example ¥ (€2 - 2) must be replaced by ¥(2 + Q). This may seem a little confuse at
this point, but we will define it more rigorously later using the notion of limit ordinals.

For more explanations about this approach, see also David Madore’s ” Petit guide bordélique de quelques ordinaux intéressants”
(in french) :

http://www.madore.org/ david/weblog/d.2017-08-31.2462.ordinaux-interessants.html

The most classical way to define an ordinal collapsing function is to define a set of ordinals C(a) or C(a,b) where a and b are
ordinals, which contains all ordinals that can be built using an initial set of ordinals and some operations or functions, and then
define v¥(a) or v (a,b) as the smallest ordinal that is not in C(a) or C(a,b), or the least ordinal that is greater than than all
countable ordinals of C(a) or C(a,b).

Another approach consists in defining an ordinal collapsing function recursively, by defining its value for 0, for the successor of
an ordinal, and for different kinds of limit ordinals.

About ordinal collapsing functions, see also the following series of videon on YouTube :
Extremely large numbers :

https://www.youtube.com/playlist ?1ist=PLUZ0A4xAf7nkaYHtnqgVDbHnrXzVAOxYYC
Ridiculously huge numbers :

https://www.youtube.com/playlist ?1ist=PL3A50BB9C34AB36B3

Ordinal collapsing functions permit to go beyond the limit of a notation. Let us consider, for example, the very limited notation
based on the ordinal 0 and the function suc. With this notation, we can write 0, suc 0 = 1, suc (suc 0) = 2, ... and more
generally all ordinals less than w. So the limit of this notation (the least ordinal that cannot be written with this notation) is w.
To go beyond this limit, we can then define a new notation based on the ordinal 0, the function suc, and the limit of the initial
notation, w, which we will write 1(0) in our new notation. With this notation we can write 0, suc 0 = 1, suc (suc 0) = 2,
¥(0) = w, suc(tp(0)) = w + 1,.... The limit of this new notation is w + w = w - 2, which we will write ¢(1).

Then we define a new notation based on 0, suc, ¥(0) = w and (1) = w -2, and so on, with, for any natural number n,
b(n+1) = p(n) +w, and P(n) =w - (1 +n).

We can define canonically 1(w) as the limit of ¢(0),4(1),4(2), ..., and more generally ¢ (limh) as lim (i o h), and generalize the
previous formulas to any ordinal a: ¢¥(a + 1) = ¥(a) + w and Y(a) =w - (1 +).

Then we can define a notation based on the ordinal 0 and the functions suc and . With this notation, we can write 0,(0) =
w, YP((0)) = h(w) =w - (1 +w) = w-w = w?,¥P(w?) = w?,.... The limit of this notation is w*.

We can go beyond this limit with collapsing, by introducing an ordinal €2 which may be any ordinal greater than all the ordinals
we want to write with our notation (countable ordinals). The simplest choice is 2 = wy, the least uncountable ordinal. We
define ¢(£2) as the limit of 0,(0), ¥ ((0)),... = lim(n — ¢¥™(0)).

Note that, according to its definition, () is the least fixed point of ¢, so we have (¢(2)) = ().

) can be defined as Lim4I, the limit with cofinality wy of the identity function, so we have (Q) = lim(n — ¢™(0)) = lim(n —
(¥ o I)™(0)). We can generalize this formula for any function h : ¢(Limih) = lim(n — (¢ o h)"(0))).

With all these definitions, the complete definition of our notation becomes :

e (0) =

® 1(suc) Y(a+1)=9¢(a) +w

o Y(lim g) = lim(n — ¢¥(g(n))) = lim(¢ o g) or with fundamental sequence notation : ¥ (a)[n] = ¥(an])
e Yp(Limih) = lim(n — (¢ o h)"(0))

We can define other ordinal collapsing functions corresponding to other values of 1(0) and/or other formulas for psi(suc «).

15.1 Recursive approach

We will use the uncountable ordinal Q2 = wy = Lim,I = Hysuc 0 to define countable ordinals.
We can define a family of ordinal collapsing functions ¢ parametrized by ¢ (0) and f, where ¥(0) is a given ordinal, and f is a
function that, given an ordinal, gives an ordinal, by :

e The value of ¥(0), a given ordinal, for example 1

o P(suc a) =Pla+1) = f(¥(a))

e Y(lim g) = lim(n — ¥(g(n))) = lim(y o g) or with fundamental sequence notation : ¥ (a)[n] = ¥(a[n])
e Y(Limih) =lim(n— (¢ o h)™(()) = lim[(¢p o h)*(¢)] with ¢ =0 or 1 or ¢,,(0) for example.

38

The choice of ¢ = 0,1 or 1(0) is not very important since it does not change the value of the limit. Traditionaly, 1/(0) is generally
chosen, but 0 or 1 seems simpler to me.

Note that as a particular case of the fourth rule, when h is the identity function, we have ¢¥(LimiI) = (Q) = lim[*0] =
sup{0,1(0),1(1(0)), ...} which is the least fixed point of 1, so we have (¢(2)) = ().

Concerning the values of ¥ between () and Q2 we have a choice between two possibilities :

e Apply the general rules, which seems the simplest to me. In this case, the rule ¥(a + 1) = f(¥(a)) gives for example
P () +1) = f(L((Q))) = F($()).

e Consider that ¥(«) = ¥(Q) for any a between 1(€2) and 2, which seems to be more often chosen, perhaps because it keeps
the monotony of . In this case, we have for example ¥ (¢(2) + 1) = ¥(Q), and the rule "¢(a + 1) = f(¢»(a))” is not
true for any a and must be restricted by adding some condition, for example something like "In 9 (g(¢(«))) we must have
a < g(¥(a))”. This choice permits to get same values as ”classically” defined ordinal collapsing functions.

With RHSO notation, 2 = w; = Hysuc 0 and the least fixed point of a function fis H f 0.
We also have :

Y(Hizyz ... zp)

= (Limq[x®yz ... zp])

= lim[(¢ o [z%yz1 . .. 2p])*0]
_lzm[[(@ 'yZ1)] 0]
H[y(xyz .)]0
H[¢([suc — =, O —ylez...2)|0

Examples :

If h(a) = @, then h(Q) = Q = Hysuc 0,2 = suc,y = 0,n = 0,9¥(Q) = (Hysuc 0) = H[p(suc — suc,0 — 0]e)]0 = Hy0 =
sup{0,1(0), ¥(¢(0)), .. .}.

If h(a) = Q4 a, then h() = Q+Q = Q-2 = Hysuc(Hysuc 0),z =
(- 2) = Y(Hysuc(Hysuc 0)) = H[Y([suc — suc,0 — Hysuc 0]e)]0 =
P(Q), Y([suc = suc,0 = Hysuc 0](())) = (Q + ¥(Q)),...}.

su = Hisuc 0,n = 0,¢(h(Q)) = v(Q+ Q) =
{ ([suc — suc,0 — Hisuc 0]0) = ¢(Hysuc 0) =

We will now examine what is the limit of the notation based on 0 and .

It is the limit of 0,(0), 1 (1(0)), ..., which is ().

To go beyond this limit, we can either add € to the basic symbols of our notation, which would then be based on 0, 2,).
Another possibility is to introduce a new function ¢ with 12(0) = Q.

More generally, the family of ordinal collapsing functions ¥ can be extended to a family of hierarchies of ordinal collapsing
functions v,,.

We will use uncountable ordinals Q = Q1,5,Q3,... to define countable ordinals. For more simplicity, we will take Q. = w, =
Lim, I = lim,, I = H,suc 0 in RHSO notation, where I is the identity function I = [e]. We also have Qp = wy = w.

This family of hierarchies of ordinal collapsing functions v, where v is an ordinal, is parametrized by the functions z and f,
where z and f are functions that, given an ordinal, gives an ordinal, and is defined by :

e ,(0) = z(v) (for example : 1,(0) = Q,, or ¥y(0) = 1;911,(0) = Q14 = w14y

* py(suc a) = f(y(a))

o U, (lim h) = lim(¢y, o h) (with lim = Limg)

o Y, (Lim,1h) = Lim,11(v, o h) if K < v, or with fundamental sequence notation : v, (a)[n] = ¥, (an])
o Y, (Lim,1h) = lim[, (h((¢s 0 h)*(()))] if k& > v, with (=0 or 1 or 1, (0) for example.

We can see that for 1)y we get the same definition as the previous definition of).

Concerning the last formula, with v, (Lim,11h) = lim[(¢, o h)*({)] we also get the previous one for ¢y but it is not the same
formula as for Buchholz function which we will see later.

The choice of { = 0,1 or 9,(0) is not very important since it does not change the value of the limit. Traditionaly, ¥, (0) is
generally chosen, but 0 or 1 seems simpler to me.

Note that as a particular case of the fourth rule, when h is the identity function, we have), (Lim,11) = 1, (Q,11) = lim[1),°0] =
sup{0,1,(0), 1., (1, (0)), ...} which is the least fixed point of 1, so we have ¥, (¥, (Q41)) = Yo (Qu11).

Concerning the values of 1, between 1, (,41) and 2,11, some authors consider that it is 1, (€,41), which implies that the
rule ¥, (suc @) = f(¥,(«)) is not true for any o and must be restricted by adding some condition like "In v, (g(«)), we must

39

have a < g((x)), but it seems simpler to me to consider that the rule ¢, (suc a) = f(1,(a)) is always true, which implies for

example that %(SUC%(QVH)) = f(wu(wu(Qu+1)) = f(l/Ju(Qwrl))

With RHSO notation, 2, = w, = Hisuc 0 and the least fixed point of a function fis H f 0.
We also have :

Y (Hyp12yz1 - .. 2p)

=, (Limy1[zyz1 ... 2p))

= lim[(¢y o [z°yz1 ... 2p))*0]

= lim[[Y, (z%yz1 . .. 2p)]*0]

= H[,(2%yz1 ... 2)]0

= H[,([suc = 2,0 > y] @ 21...2,)]0

I will also define a function ¥ («) where n is a natural number, that nests calls of () for successive values of k between 0
and n, for example 15(0) = 1o(¢1(¢2(1¥3(0)))). More generally, this function is defined by :

* 5(a) = to(a)

o Yiyi(a) = Vi (¥ria(a))
® YLim, (@) = Limy(n = ¢5) (a))

Here are some example of such ordinal collapsing functions with the corresponding ”traditional” ordinal collapsing function

which we will see later and some of their values :

Corresponding None Buchholz ¢ Madore’s
"traditional” OCF
C(«) generated | Cp(«) generated C(a) generated
by L, suc, 9(€) | by 1, +, 1,(€) by 0,1,,9,
where £ < « where 1 < w +, -, exp., ()
and £ < « where £ < o
4(0) 1 1 1 w o
@) @)
bla+1) Bl +1 | Pla)+w ble)-w | sufe(e) 3 | supfu(e))
1/)(1) 2 w W 90} €1
Yo+ B) Y@ +8 | d(@)+w-B P(a) +w”
P(a) 1+« W w® el €a
cond. if ¢ monotone | if o < w if o < w? if o < g if o < (o if a < ¢
P(w) w w? w Ew Ew
P() w w* €0 Go o
(R +1) w+1 w¥ +w €0+ W E¢o+1 E¢o+1
— w60+1
P(Q2-2) w? W €1 G G
P(Q%) €0 €0 Co Mo Mo
$(Q7) Lo I'o Lo Iy Iy
¥1(0) Q Q Q £at1 £at1
.1/)1(0) _1/)1(a)
Yi(a+1) Yifa)+1 | (o) +w Yi(a) - w sup{thi(@) } | sup{a(a)” }
¢1(1) Q+1 O+ w Q-w EQ+2 €Q+2
— 01
1 () Q+a Q+w- -« Q- we €Q+1+a EQ+1+a
— w§2+a
Y1 (w) Q+w QO+ w? Q- wv EQtw EQtw
_ wQ+w
wl(Q) Q-w Q- w QQ £Q-2 £Q.-2

With more details, the function defined by :

e (0)=1

40

o lat1)=t(a)+1

has the following properties :

o vla+B) = v(a) + 4
e v(0)=1+a

() is the limit or least upper bound of :

which is w.
Then we have :

o Y(Q+1)=w+1

e Y(QU+a)=w+a

o Y(Q+ Q) =(2-2) = limit of :
-0
(@) = w
—YPQ+w)=wtw=w-2

=w-w=w?

o H(Q2-2+ Q) =(Q-3) = limit of :

-0

Eo +
limit of :

e (VP +Q+a=¢ w+ta

o H(N2+Q+ Q) =¢(Q%+Q-2) = limit of :
-0
— ¢(Q2—|—Q):€0'w
— (2 +Q+ep-w)=¢gp-w-2

:50’w2

41

e V(2 +Q-a)=¢g-w®

o (N2 4+ Q- Q) =¢(Q*+Q?) = (02 - 2) = limit of
-0
— (@) = g0
— (2 + Q- eg) = g0 - w§ = €0
— w(Q2 —|—Q-502) =g w0 =gg- w0 =g,
— P2+ Q- g0%0) =g -w " =gg -0

¢'(1,1) = Go = ¢(2,0)
02 = (1 + ,0) = ¢'(a, 1)
Q%) = limit of :

The function defined by :

e (0)=1
o Ylat1)= (o) +w

has the following properties :

* Yla+p)=v(a)tw-pB

o Y(a)=w-«
¥(Q) is the limit or least upper bound of :
o 0
e (0)=1
* Y((0)) =¢(1) =w
o () =

which is w®.
Then we have :

e YA+ 1) =w4w
e Y(Q+a)=w4+w- -«
e (2 + Q) = limit of :
-0
- 0(©) = w

— @+ B() = Y2+ W) = - w = w2

42

w_w:ww—i-l

e H(Q-24+a)=¢(Q-2)+w-a=wT+w
o %(Q-2+ Q) = p(Q-3) = limit of :
-0
— P(Q-2) = wtt
—P(Q-2+wetl) = ot et = et 2

w—+1 w—+2

=wth w=w
Q- (1+a)) =wre
P(Q- Q) = (Q?) = limit of :

:EO
e YV +a)=¢ctw-a
e (02 + Q) = limit of :
-0
- 1/’(Qz):f‘io

— P(P4ep)=eo+tw-egg=¢0-2
=E&p W
e (VP +0+a)=cpwtw-a
o (2 4+ Q1 Q) =Y(Q2+Q-2) = limit of
-0
— PP+ Q)= w
— (P +NV+epw)=¢cp-wtw-go-w=2¢p w2

:5O.wa

e V(2 +Q-a)=¢g-w®
o (N2 +Q-Q)=9(Q%+Q?) =(Q?-2) = limit of :
-0
— $(2?) = <o
- 1/}((224—9'80) =€Q'w€° 2602
— P2+ Q- g0?) =g w0 =eg - w0 = gq - (W) = g - 500 = gyl 0 = g%
_ ’1/1(92 —|—Q . 5050) =¢p .ngEO = ‘606050 — E_:OlJraoso _ Eogoso
=é&1 = @(17 1) = ()0/(07 2)
o (- a) =¢'(0,a)
o (02 Q) =(Q3) = limit of :
-1
- ¢/(07 1) = &0

43

— (%) = b(1) = w
- B(0¥) = ¢, 1)
- 7/)(Q‘P (w 1)) = 901(901((“)7 1)7 1)

The function defined by :

e (0)=1
o Yla+1)=v(a) w

has the following properties :

o ¥+ B) =) -
o ¥(0) = w"

() is the limit or least upper bound of :

which is gg.
Then we have :

o (N +1)=¢gp w=wor®
o Y(N+a)=¢p w* =wote
o (N4 Q) =¢(Q-2) = limit of :

Q+9(Q)) =9(Q+e0) = 0w = g0 - €0 = 0°
Q+e0%) = g0 - W™ =g WO = gp- (W) = gg - 50 = g9+ = £

€0 €0 €0 €0
Q+60%0) =ep-w " =gg-g0%° " =golteo ™’ =gy

€0

44

— (70 = p(p(w,0),0)

=¢(1,0,0) =

The function defined by :
o Y(0)=w
o P(a+1) = sup{e(a), p(a)¥ (@), ()P @}
has the following property :
o Y(a) =&,

() is the limit of :

which is (p.
Then we have

P(Q+ 1) = sup{th(Q), (VYD ..} = sup{Co. ¢§°, - .} = ecor1
'(Z)(Q + 2) = €¢o+2
d)(Q + Oé) = E¢o+a

In summary, we can define completely this ¢ function by :

e Y(0) =w /

o Yla+1) = sup{e!(a), ¢ (), 4 () T,y
o p(lim(f))= lim(n — (f(n))

o Y(Hyzyzr...zn) = H([suc — 2,0 »> y| e 21...2,)]0

We will see with more details other functions after having seen the corresponding functions defined with the ”classical” approach.

15.2 Classical approach

Remember that this approach consists in defining a set of ordinals C(a) or C(a,b) where a and b are ordinals, which contains all
ordinals that can be built using an initial set of ordinals and some operations or functions, and then define ¢ (a) or
the smallest ordinal that is not in C(a) or C(a,b), or the least ordinal that is greater than than all countable ordinals of C(a) or

C(a,b).

Some examples of ordinal collapsing functions are described in http://googology.wikia.com/wiki/Ordinal notation .
These functions are extensions of functions on countable ordinals, whose fixed points can be reached by applying them to an

uncountable ordinal.

45

Here is a correspondence between basic notation systems and their collapsing extensions based on formula :

f=FQ)
Basic notation Formula Limit Extension Correspondence Crossing
Cantor cantor(a,) | least a = cantor(a,0) | Taranovsky’s C | C(a,) = f+w® | C(Q,0) =g
=/+w" =w®* =¢ iff (e,) > «
w® least o = w® Buchholz 1, o(a) = Yo(Q) =eo
= €9 if a < eg
Epsilon €a least a = g, Madore’s 1) P(a) = eq () = (o
= (o for all o < (o
Binary Veblen 0o () least o = (v, 0) 0 O(a, B) = p(a, B) | 0(£2,0) =Ty
or p(a,) =Ty below Ty

15.3 Buchholz 1, functions

Buchholz’s psi-functions are a hierarchy of single-argument ordinal functions 1, («) introduced by german mathematician Wilfried
Buchholz in 1986.[1] These functions are a simplified version of the §-functions, but nevertheless have the same strength as those.

15.3.1 Definition

Buchholz defined his functions as follows :

o CY(0) =

. C”“(a)

o Cu(a) =U,, C(a),

o Yy(a) = min{y|y ¢ Cu(a)},
where

lifr=20
Q”{ N, ifvr>0
and P(y) = {7, ...

.Yk} is the set of additive principal numbers in form w¢,

P={acOn:0<anV¥n<al+n<a)}={ws:€ec0n},
the sum of which gives this ordinal ~:

Yy=o1 o+ ...

+ oy, where aqg > g > ...

> ap and aq, s, ...,

ay € P(7).

C"(JUIP() € CP ()} U{yu(§)IS € anCl(a) AE € Cu(§) Ap < why

Note: Greek letters always denotes ordinals. On denotes the class of all ordinals.
The limit of this notation is Takeuti-Feferman-Buchholz ordinal.

15.3.2 Properties

Buchholz showed following properties of those functions:

b ¢u(0) =1,
e Y (a) €P
o Y, (a+1)
o (), < zﬂ,,(Oz) < Qwrla

=min{y € P: ¢, (a) <~} if a € Cp(a),

e <= ¢y(a) < wu(ﬁ)’

e o(a) =w®

if a < eg,

o Y, (a) =wttifa <eq 4 and v #0,

[] Q(EQV+]_, O)

15.3.3 Normal form and fundamental sequences

Normal form :

=o(eq,+1) for 0 < v <w.

The normal form for 0 is 0. If a is a nonzero ordinal number o < A = min{S|¢3(0

o = wyl (61) + ¢u2(ﬂ2) +

Fundamental sequences :

46

) p—
..+ ¥y, (Br) where k is a positive integer and ¢, (81) > ¥, (82) >
also written in normal form.

least fixed point of

} then the normal form for « is
. > 1, (Bx) and each v;, B; are

The fundamental sequence for an ordinal number a with cofinality cof(a) = § is a strictly increasing sequence (&[n]),<g with
length § and with limit «, where a[n] is the n-th element of this sequence. If « is a successor ordinal then cof(a) = 1 and the
fundamental sequence has only one element a[0] = a — 1. If a is a limit ordinal then cof(a) € {w} U {Q,41|n > 0}.

For nonzero ordinals o < A, written in normal form, fundamental sequences are defined as follows:

1. If oo =1y, (1) +Yu, (B2) + - .. + 1y, (Br) where k > 2 then cof(a) = cof(vp,, (Br)) and a[n] = ¢y, (B1) + .-+ Vv, (Br—1) +
(Y (Br) 1)),

2. If & = ¢p(0) = 1, then cof(a) =1 and «[0] =0,

3. lfa= 77[Jl/+1(0)> then COf(a) = Q1/+1 and a[’?] = Qqul[T/] =1,

4. If a = 1,(0) and cof(v) € {w} U {Q,11|n > 0}, then cof(a) = cof(v) and a[n] = 1, (0) = 1,

5. If a = ¢, (8 + 1) then cof(a) = w and aln] = ¥, (B) - n (and note: ¢, (0) =),

6. If @ = ¢, (B) and cof(B) € {w} U {Q41|p < v} then cof() = cof(B) and an] = ¥, (B[n]),

7. If @ =, (B) and cof(B) € {Q, 41| > v} then cof(a) = w and an] = 1, (B[y[n]]) where { %2]4—_1?”: Yu(Blynl)
8.

If & = A then cof(a) = w and a[0] = 0 and afn + 1] = Y4, (0) = Qg
These fundamental sequences are equivalent to the following recursive definition of ¥, («) :

1. The first fundamental sequence is not part of the definition of 1, («), it it a particular case of the general definition of
addition, with a + Lim, (h) = Lim, (§ — a + h(§))

Yo(0) =1

Yu41(0) = Qu

VLim,n(0) = Limy, (§ = ¥pg)(0)) = Lim, (€ — Qne))

Vo(B+1) = () - w

Py (lim h) = lim(& — 1, (h())) = lim(), o h) (with lim = Limy)

Yy (Limyg1h) = Limy1(§ — ¥y (h(€))) = Limy 41 (Y o h) if p <v

b (Limy 1) = Him(€ = by (A 0 WE)) i o > v

This fundamental sequence is not part of the definition of 1, (), it can be deduced from the definition of A = min{8|y5(0) =
B}

© XN ote W

15.3.4 Explanation

Buchholz is working in Zermelo—Fraenkel set theory, that means every ordinal « is equal to set {5|8 < «}. Then condition
CY(a) = Q, means that set CO(a) includes all ordinals less than €, in other words C(a) = {B|8 < Q. }.
The condition CI (a) = C7(a) U {v|P(7) € C2 ()} U{,(€)|€ € aNCl () A p < w} means that set C7T!(«) includes:

e all ordinals from previous set C7 (),

e all ordinals that can be obtained by summation the additively principal ordinals from previous set CJ'(«),

e all ordinals that can be obtained by applying ordinals less than « from the previous set C”'(«a) as arguments of functions
¥y, where p < w.

That is why we can rewrite this condition as:

Cyti(a) = {8+, vu()B,v,n € Cla) An<aAp<wl

Thus union of all sets C} (o) with n < w i.e. Cy(a) =, .,, CJ («) denotes the set of all ordinals which can be generated from
ordinals < X, by the functions + (addition) and v, (), where ¢ < w and £ < a.

Then ¢, (o) = min{vy|y € C,(«)} is the smallest ordinal that does not belong to this set.

Examples :

Consider the following examples:

Co(a) = {0} ={B:p <1},

Cy(0) = {0} (since no functions ¥ (n < 0) and 0+0=0).

Then 1/}0(0) =

Co(1) includes 19(0) = 1 and all possible sums of natural numbers:

Co(1) ={0,1,2,...,googol, ..., TREE(googol), ...}

Then (1) = w - first transfinite ordinal, which is greater than all natural numbers by its definition.
Co(2) includes 1¥g(0) = 1,10(1) = w and all possible sums of them.

Then 1g(2) = w?.

For Cp(w) we have set Cop(w) = {0,9%(0) = 1,..., (1) = w, .., ¥(2) = w?, ..., ¥(3) = w3, ...}.

47

Then 1o (w) = w®.

For Cy(R2) we have set Co(Q) = {0,4(0) = 1, ...,0(1) = w, ..., h(w) = w*, ..., Y(w¥) = w*",..}.

Then ¢y (£2) = &o.

For Cp(2 + 1) we have set Co(2) = {0, 1, ...,%0(Q) = €0, ..., €0 + €0, ---11(0) = Q, ...}

Then (Q + 1) = gow = wo L,

1/)0(92) = €1,

Po(2?) = Co,

p(a, 14 B8) = 1o (2°P),

Yo () =Ty = 6(Q,0), using Feferman theta-function,

Note that we find the same result as with the previously seen function defined recursively with ¢(0) =1 and ¥(a+1) = ¢(«a) -w.
wO(QQQ) is large Veblen ordinal,

Yo(2 1 w) = Yo(eat1) = O(ea+1,0).

Now let’s research how), works:

C?(Oé) = {6 : ﬁ < Ql} = {O,T/J(O) =12 "'gOOgOL ,7/10(1) =w, 7’11)0(9) = €05

ey 0 (Q2) =T, ...,7,/1(999“12), ...} i.e. includes all countable ordinals.

C4 () includes all possible sums of all countable ordinals. Then

11(0) = € first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with
cardinality Nj.

Ci(1) =10, ...;%0(0) = w, .., V1(0) = Q, .., A+ w, ..., Q + Q, ...}

Then (1) = Qw = w1,

Then v (2) = Qw? = w2,

U1 (Yo () = Qeg = w0,

91(00(Q)) = ATy = w0,

D1(1(0)) = $1(0) = 02 =,

B0 =u0rT =00 = (00 = 0,
w10

wl(Qz) ¢“(0) = QM w=c¢eqt1.

For case ¢(£22) the set Cp(£22) includes functions 1y with all arguments less than 25 i.e. such arguments as 0,1 (0), %1 (¢1(0)), 3 (0), ..., 7
and then 9o(02) = ¥o(¥1(22)) = Yo(ea+1)-

In general case: ¥o(Qu+1) = Yo(u (Qu41)) = Yo(eq,+1) = 0(gq,+1,0).

We also can write:

0(2,,0) = o (Q) (for 1 <v < w).

15.3.5 Extension

We rewrite Buchholz’s definition as follows[2]:

o CP(a) ={BIB <},
o CPH @) = {B+ 7, Yu(n)li, B,v,m € Cl(a) An < af,
e Cy(a) =U,, Cl(a),
e (o) = min{y|y € C,(a)},
where

O lifvr=0
¥] smallest ordinal with cardinality ¥, if v > 0

and w is the smallest infinite ordinal.

There is only one little detail difference with original Buchholz definition: ordinal y is not limited by w, now ordinal u belongs
to previous set C,,.

For example if C§(1) = {0} then C(1) = {0,%0(0) = 1} and C2(1) = {0, ...,11(0) = Q} and CZ(1) = {0, ...,a(0) = Qq} and
SO on.

Limit of this notation must be omega fixed point ¥(Qq,,) = ¥(¥y (0)(0)), where 1) without subscript denotes .

15.3.6 Sources

Buchholz, W. ”A New System of Proof-Theoretic Ordinal Functions”. Annals of Pure and Applied Logic, vol. 32. Retrieved
2017-05-13.
Maksudov, Denis. The extension of Buchholz’s function. Traveling To The Infinity. Retrieved 2017-05-18.

48

http://googology.wikia.com/wiki/Buchholz

Jaiger, G (1984). ”P-inaccessible ordinals, collapsing functions, and a recursive notation system”. Archiv f. math. Logik und
Grundlagenf. pp. 49-62.

Buchholz, W.; Schiitte, K. (1983). ”Ein Ordinalzahlensystem ftir die beweistheoretische Abgrenzung der H -Separation und
Bar-Induktion”. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse.
https://en.wikipedia.org/wiki/Buchholz_psi_functions

15.4 Madore’s

This ordinal collapsing function is described in :

e https://en.wikipedia.org/wiki/Ordinal_collapsing_function
e http://quibb.blogspot.fr/2012/03/infinity-impredicative-ordinals.html

The definition of this function uses the ordinal 2 which is the least uncountable ordinal.

C(«) is the set of all ordinals constructible using only 0,1, w, Q2 and addition, multiplication, exponentiation, and the function
(which will be defined later) restricted to ordinals smaller than c.

() is the smallest ordinal not in C(«).

The smallest ordinal not in C(0) is the limit of w,w®,w*",... which is &g, so ¥(0) = 9. More generally, 1)(a) = &, for all
a < (o, P(a) = o for (o < a < Q, and P(Q +a) = o + a) for a <= (.

Note that (Q) = (o is the least fixed point of o — €,; we already saw such an equality when we introduced collapsing in the
Veblen function.

The 1 function can be defined recursively by :

° 1/)(0) €0

o dla+1) = sup{th(a), (@)@, (a) P @ 3
o Y(limf) = lim(+ o f)

o Y(Limyf) = lim(n — (o f)"((0)))

Some examples of fundamental sequences (FS) are :
AFSofwisO,1, 2,3,

AFSOf¢()1sww w¥ L

AFSof p(a+1) is Y(a), (a)’/’(o‘) zﬂ(a)w(a)w(a),. e

AFS of ¢(£(92)) is ¥(0), (£ ((0))), P (f ((f (¥(0)))))s - - -

For example :

A FS of ¥(Q) is 1(0), ¥ ((0)), ¥ (¥ (¥(0))), - . .
A FS of 1(Q2-2) is 9(0), ¥ (2 + ¢(0)), ¥ (2 + (2 + 1(0))), - . .
A FS of (22 - 3) is (0), (02 - 2+ Q¥0) (Q2 . 2 4 Q27242%)

The limit ¢(eq41) of ¥(Q), 1 (Q?), w(QQQ), ... is the Bachmann-Howard ordinal.
But £q41 cannot be expressed in this system, because [g,] does not belong to the functions used to define C'(«). We could add
it, but that would not bring us very far. A better idea is to define a new function ¢ :

Let 11 («) be the smallest ordinal which cannot be expressed from all countable ordinals, Q2 and Q3 using sums, products,
exponentials, and the v function itself (to previously constructed ordinals less than «/), where €25 is an ordinal which is
greater than all the ordinals that will be constructed using 1y, for example we can take Q = w; (the least uncountable
ordinal) and Qs = wsy, the least ordinal whose cardinal is strictly greater than the cardinal of w;.

With this definition, we have ¢1(0) = eq11,%¥1(1) = eqre, and more generally ¥ (@) = €q114q-

We can define a hierarchy of functions 1, like explained in YouTube video ’Extremely Large Numbers 227 :
https://www.youtube.com/watch?v=0T7Ef{tYZEivo
(Note that here €2, has been replaced by Q,,11 to be consistent with Madore’s notations)

e 1) is associated to the set {0,1,w,Q}
® Yo =1
e 1 is associated to the set {0,1,w,Q, 0}

49

Note that to get a countable ordinal which interests us, we must nest successive calls of v,,, for example ¥ (1 (12(3(0)))). We
can simplify the notation by replacing the nested call (11 (¢2(103(0)))) by just «3(0). This convention also permits to define
for example 1,,(0) as the limit or least upper bound of 1(0),11(0),12(0),5(0),.... We can also define 1, for any ordinal a.
The limit of this notation, sometimes called oy, is the limit or least upper bound of 1(0), ¥y (0)(0), Vapy0) (0) (0),. ... Using other
notation systems, it is the limit of ¥(Q), ¥(Qq), ¥ (Qag), - - -

See also :

https://en.wikipedia.org/wiki/Ordinal_collapsing_function

https://www.youtube.com/watch?v=0T7EftYZEivo

http://googology.wikia.com/wiki/Buchholz%27s_function
https://medium.com/@joshkerr/mind-blown-the-fast-growing-hierarchy-for-laymen-aka-enormous-numbers-d9a865c6443b

15.5 Haskell implementation of Madore’s 1
module Madore where

ident x = x

comp f g x =1 (g x)

data Ord

= Zero

| Suc Ord

| Lim Ord (Ord -> 0rd)

one = Suc Zero
two Suc one

instance Show Ord where

show Zero = "Zero"

show (Suc a) = "(Suc " ++ show a ++ ")"

show (Lim n f) = "(Lim " ++ show n ++ " " ++

show (f Zero) ++ "," ++ show (f one) ++ "," ++ show (f two) ++",..." ++ ")

omega = Lim Zero ident
omega_plus_one = Suc omega

omegal = Lim one ident
omega2 = Lim two ident

-— plus a b = b+a
plus Zero b = b
plus (Suc a) b =
plus (Limn £f) b

Suc (plus a b)
= Lim n (\x -> plus (f x) b)

50

-- times a b = b.a

times Zero b = Zero

times (Suc a) b = plus b (times a b)

times (Lim n f) b = Lim n (\x -> times (f x) Db)

-- power a b = b"a

power Zero b = one

power (Suc a) b = times b (power a b)

power (Lim n f) b = Lim n (\x -> power (f x) Db)

-- power of a funcion : fpowerO a f = f~a

fpower Zero f = ident

fpower (Suc a) f = comp f (fpower a f)

fpower (Lim n g) £ = \x -> Lim n (\y -> fpower (g y) f x)

epsilon0 = fpower omega (\x -> power x omega) Zero

-- Madore psi

madore Zero = epsilonO

madore (Suc a) = fpower omega (\x -> power x (madore a)) Zero

madore (Lim Zero g) = Lim Zero (comp madore g)

madore (Lim (Suc Zero) g) = Lim Zero (\n -> fpower n (comp madore g) (madore Zero))

15.6 Correspondence between Madore’s) and other notations

To distinguish between the different Veblen functions, let us call ¢ the Veblen function with finitely many variables, and ¢
the Veblen function with transfinitely many variables.

pp is a function that, when applied to a list of countable ordinals, gives a countable ordinal. A list of countable ordinals can be
seen as a function that, when applied to a natural number, gives a countable ordinal, with the restriction that the result differs
from O for finitely many integers. If we denote w the set of natural numbers and 2 the set of countable ordinals, then this can
be written : g : (w — Q) = Q. If we replace & — 3 by 5%, we get Q% and if we apply 1 to it, we get 1»(Q?"), which is the
small Veblen ordinal, the least ordinal that cannot be reached using ¢g.

For ¢, the position of a variable is represented by a countable ordinal instead of a natural number, also with the restriction
that finitely many variables differ from 0, so we have o : (@ — Q) — Q. If we replace « — § by 8%, we get QQQ, and if we

apply ¥ to it, we get w(QQSZ), which is the large Veblen ordinal, the least ordinal that cannot be reached using 7.

A correspondence between Madore’s ¢ and other notations can be established by starting from (0) = € and using the properties

Pla+ 1) = sup{e(a), ()@ p(a)?@” Y and (f(Q)) = least fixed point of a — p(f(a)).
This method gives the following correspondence :

L w(O) = &9 = RlHSUC 0

e (1) = sup{(0),4(0)*©), w(0)¢(0)w<0),. Y = sup{eg,£0%°,60%°°,...} = &1 = Ry (R1H)suc 0

e Y(a)=¢e4 = [suc = Ry,0 = H](1 4+ a)suc 0

o () = Y(Hisuc0) = sup{0,e0,ecy, ...} = o = H[[suc = R1,0 — H]esuc 0](suc0) = sup{suc0, Ry Hsuc 0, Ry H Ry H suc 0,

o Y(Q+ 1) =(suc (Hysuc 0)) = sup{Co, COCO,COCOCO, ...} =e¢o41 (see proof below) = Ry (RaR1 H)suc 0

o Y(Q+2) =YP(suc (suc (Hisuc 0))) = e¢yr2 = R1(R1(ReR1H))suc 0

o V(N4 a) =¢e¢y+a = [suc — R1,0 - RyRy Hl|asuc 0

o Y(Q+ Q) =y(Q-2) =p(Hysuc (Hysuc 0)) = ¢ = H[[suc — R1,0 — RoR1 H| e suc 0](suc 0) = Ro Ry (R R1H)suc 0

o $(Q-(1+a) = C

o (- a) =, =[suc = RaR1,0 — Hlasuc 0

o = (Q?) = Y(H1(Hysuc)0) = sup{0,o,lcoy---+ = Mo = ©(3,0) = ¢'(2,1) = H[[suc — RoR1,0 — H] o
¢ 0) = Ry(RoRy1)Hsuc 0

je)
e
:_/

o
(- B) = ¢'(,)

51

o (Q%) = (H Hysuc 0) = Ty = ¢(1,0,0) = ¢'(1,0,1) = H[[suc — Ry,0 — Ry] ® suc 0](suc 0) = R3RoRy Hsuc 0 (Note
that this confirms the Simmons - RHSO correspondence conjecture ; note also that since 1(€2) and before this point we
have ¢(a) = [Hy — Ra,suc — R1,0 — H| a suc 0, but this does not work anymore from this point)

o Pt y) = (o, B,7) = ¢l 5(7)

o H(Q0) = LVO = RyRsRyRy Hsuc 0

(eq41) = BHO = R,, 1 Hsuc 0 with eq1 = sup{Q, Q2, Q%" ..}

(eqs1 + 1) = sup{ BHO, BHOBHO BHOBHO""® \ = R\(R,, 1H)suc 0

(eq+1+2) = Ri(R1(Ry.. 1 H))suc 0

(eq41 + @) = [suc = R1,0 = R, 1 H|asuc 0

(eq1+ Q) = H[[suc = R1,0 = Ry, 1H] e suc 0](suc 0) = RoR1(Ry,.1H)suc 0

(€Q+1 + Q-+ 1) Ry (RgRl(melH))suc 0

(€Q+1 +Q+2) Rl(R1(R2R1(me1H))>SUC 0

(eqi1 + Q+a) =[suc = R1,0 = RoR1(Ry. 1 H)|asuc 0

(ear1+Q+ Q) =¢(eqi1 + Q- 2) = H[[suc = R1,0 = RaR1(R,,..1H)] ® suc 0](suc 0) = RyRy(RaR1(Ry.. 1H)suc 0

(eq41+ Q- a) =[suc = RaR1,0 = R, 1H]asuc 0

(a1 +Q-Q) =v(eqi1 + Q?) = H[[suc — RaR1,0 — R, 1H] e suc 0](suc 0) = Ra(RaR1)(R,,..1H)suc 0

(eqs1 + Q%) = [suc = R2,0 = Ry]a(Ry,.. 1H)suc 0

(eqi1 + Q%) = H|[suc — Ra,0 — Ry] e (R, 1H)suc 0](suc 0) = R3RaRy (R, 1H)suc 0

(EQ+1 + QQQ) = R4R3R2R1(me1H)suc 0

(eqr1 +eat1) = Y(eqyr - 2) = Ry, 1(Rw. 1 H)suc 0

(eqy1 - @) =[suc = Ry,..1,0 = H]asuc 0

(eqs1 - Q) = H|[suc = Ry..1,0 — H] e suc 0](suc 0) = ReR,, . 1Hsuc 0

(€Q+1 -Q + 1) = Rl(RQmelH)SUC 0

(eqs1-Q+a) =[suc = R1,0 = RoR,. 1H]asuc 0

(eqs1- QL+ Q) = H[[suc = R1,0 = RoR,,. .1 H] e suc 0](suc 0) = RyRy(RaR,,. 1H)suc 0

(€Q+1 Q4+ Q4+ 1) =R (RQRl(RQmelH))SUC 0

(eqs1 - Q+ Q4 a) =[suc — R1,0 = RyRy(RaR,,. 1H)|asuc 0

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Q)

oM M

e 6 o o o ¢ o oo o o o o
L)

S eSS ESEESESESEESE S SRS S SR SR SRR SESEESREERSRESREEREESEESEESRE SR EERESEREESEREREESEESERSRSEEESRE S S

eq+1-Q+HQ+Q) = Y(eq1-Q+Q-2) = H[[suc — R1,0 — RoR1(RoR,,.. 1 H)]esuc0](suc0) = RyRy(RaR1(R2R,,. 1H))suc0
eqt1 Q2+ Q- a) =[suc = RaR1,0 = RaR,,. 1H]asuc 0

cai1 Q4+ Q- Q) =v(eqrr - Q+ Q?) = H[[suc — RaR1,0 — RaR,,. 1 H] e suc 0](suc 0) = Ra(RaR1)(RaR,,. 1H)suc 0
eq+1 - Q2+ Q%) = [suc = Ry,0 = Ry]a(RaR,. 1H)suc 0

eqr1 - QL+ Q%) = H[[suc — Ry,0 — Ry] @ (RaoR,, 1H)suc 0](suc 0) = R3Ro Ry (R R, 1 H)sucy

EQ+1 Q + QQQ) == R4R3R2R1 (RQmelH)S’U,CO

EQ+1 - Q-+ 5Q+1) = w(EQ+1 . (Q + 1)) = Rw,,,l(Rng,,,lH)SUCO

gat1- (24+2)) =Ry 1(Ro..1(RoR. .1 H))suco

eqr1 - (Q+ @) =[suc = Ry,..1,0 = RoR,,. 1 H]asuc 0

ear1 - (Q+ Q) =v(eqrr - Q-2) = H[[suc = Ry, 1,0 = RaR,, 1H] e suc 0](suc 0) = RoR,, 1(RaR,,..1H)suc 0

eq+1 - Q- a) =[suc = RaR,,. 1,0 = Hlasuc 0

cqi1 - Q- Q) =(eqrr - Q%) = H[[suc — RaR,. 1,0 — H] e suc 0](suc 0) = Ra(Ra Ry 1)Hsuc 0

eqt1 - Q%) = [suc = R2,0 = R, 1]aHsuc 0

eqr1 - Q%) = H[[suc — R2,0 — R,, 1] ® Hsuc 0](suc 0) = R3RyR,, 1 Hsuc0

cas1 - Q") = RyRsRyR,, 1 Hsuc 0

cqi1 - €ar1) = Y(eqr1?) = Ry oRe. 1Hsuc 0 = Ry.2. 1 Hsuc 0

£q11%?) = H[R,....1Hsuc 010 = H[R,. 1Hsuc 0]0 = RI Hsuc 0

©41) = Ry (R})Hsuc 0

cqi1'? +a) = [suc — Ry,0 = RIH]asuc 0

eqi1 + Q) = H[[suc — Ry,0 — RIH] e suc 0](suc 0) = RaRy(RiH)suc 0

™
2
+
—_

(EQ_HQ + QQ) = R3R>R; (RlH)SU,C 0
1
(€Q+1Q + €Q+1) = Rw_ul(R%H)SUC 0

52

(EQ+1Q +eqy1-2) = Rw”_l(Rw,__l(R%H))suc 0

(a1 +eqq1-a) = [suc = R,..1,0 = RliH]asuc 0

(a1 +eqr1- Q) = H[[suc — Ry,..1,0 — RIH] e suc 0](suc 0) = RoR,, 1(RiH)suc 0
(EQ+1Q +eqy1 - Q4+ €Q+1) = ¢(€Q+1Q +EQ+1 - (Q + 1)) = mel(Rszml(R%H))suc 0
(a1 +earr - Q%) = R3RoR,, 1 (RIH)suc 0

(€Q+1 + EQ+1) Ry 2R, 1(RIH)suc 0 = Ry.2. 1(Ri1H)suc 0

(eqi1®? +€341) = Rua. 1(R H)suc 0

(e +el,) = (€Q+1Q 2) = H[R,..1(RIH)suc 0]0 = RI(RiH)suc 0
(eqi1®? - @) = [suc — Ri,0 — H]asuc 0

(eqi1®? - Q) = H[[suc — R},0 — H] o suc 0](suc 0) = RyRI Hsuc 0

(Q) =Ry...Hsuc0

(€Q+1Q Qz) RQ(RQR%)HSUC 0

(eqs1®?- Q%) = [suc — Ry,0 — RilaHsuc 0

(€Q+1Q 09?) = H|[suc — Ra,0 — R}] ® Hsuc 0](suc 0) = R3RoR} Hsuc 0
(ea41” - eat1) = ¥(ea41"™!) = Ry 2RiHsuc 0

(.-€a+1) = Ra.... ...Hsuc 0

(ea41” - €d, 1) = Ru..3Ru. 2RI Hsuc 0 = Ry.p. 2R} Hsuc 0
(ea1? e 1) = ¥((ea1)?) = ¥(ed}) = RyR{Hsuc 0
(c011™®) = RL_,Hsuc 0

(eq1? = H[R! | Hsuc 0]0 = R2Hsuc 0
(

(

(

(

G@@@@@@%% %@@@@ GGS@@ IS S S Sai S

EQ+1QQ = R{'Hsuc 0
€Q+1QQ = H[R}Hsuc 0]0 = Ri’OHsuc 0= R$Hsuc 0 = RoeHsuc 0 = R{{IS“C Hsuc 0 = Ry, i1y sue oHsue 0

€Q+1EQ+1) = REQ_HHS’U,C 0= RRlHlsuc OHSUC 0
) _ R{{[R;Hlsuc 0]0

Hsuc 0

Proof of sup{o, o®°, G, .. J =gt

We have €441 = sup{eq+1, wE"H,w‘*’E“H, ...}, which gives for (o : e¢,+1 = sup{e¢, +1, w0
e¢otl <o

sup{ec, + 1w 0T w7 Y = sup{Co, (0, G, ..}

We have already seen concerning Veblen functions that the ordinals respectively limits of the fondamental sequence whose n-th

e 550

¢ +1
FLww % ..} so we have to prove

term is 586 and the one whose n-th term is 586 is the same, the least fixed point of the function a — €9, which is greater
than w and also than &g.

o . ¢o w <
For a similar reason, we also have sup{(o, Co®, G .. 3 = sup{¢”, G, % L. -
e¢ot1 w <o
So we have to prove sup{e¢, + 1w w® " .} = sup{¢p”, G, G .. g
wwa<0+1 .COM ww50+1 .Eow B
. . : : . .. : e :
We can prove this by proving w* = ¢’ in a similar way we proved w* = ¢, , where o represents an

”exponential tower” with « repeated n times.
For n = 0, we have :
g¢ott Co+1 ¢o. .
ww 0 :ww _ww w:wgou:(wgo)w:@w.

wwEC()+1 COW

Suppose we have w“’: = go

€ +1
Lw 6o co¥

We must prove the equality for n+1, which can be written W = gococo

53

€ +1
ww S0 o o
Wt Co: . 1+C0:
We have w® = W (by our hypothesis) = wS

¢o® ¢o® o

(for the same reason than 1+ w = w, see above) =

wCo-COCO: — (WCU)COCO: = COCOCO. . QED.
In RHSZ notation, this corresponds to the equality H(ReR1H)H ... Hsuc 0 = H(ReR1H)(RoR1H)...(ReR1H)suc 0 =
R1(RyR1 H)suc 0.

15.7 Comparison between Buchholz v, and Madore’s ¢

These ordinal collapsing function are very similar. In both cases, we define a set containing all ordinals which can be built from
some starting ordinals and some operations, and we consider the least ordinal which does not belong to this set. But the starting
ordinals are not the same : 1 for Buchholz vy, and 0, 1, w and 2 for Madore’s 1. The operations also differs : only addition for
Buchholz, but addition, multiplication and exponentiation for Madore.

Here is a comparison of some of the main features of these two ordinal collapsing functions.

Buchholz g | Co(a) generated by | 10(0) =1 | ¢o(1) = w Yo(a+1 Yola+B) | tho(a) =w™ | 1ho(2) = o
L+, (€) = o(a) - w =1ola)-wf | ifa<e
where p < w
and £ < «
Madore’s ¥ | C(a) generated by | $(0) =20 | o(1) =21 | $la+1) Bol) =ca | B =G
(e
0,1,w,9Q, = sup{¢(a)” '} if a < (o
+7 5 €TP., d)(f)
where £ < «

15.8 A recursively defined rationalized variant of Madore’s ¢ function

We have already seen that the recursive approach of ordinal collapsing functions consists, instead of defining ordinal collapsing
functions by taking the least ordinal that cannot be constructed using a given set of ordinals and operations, in defining it
recursively according to the value of the variable.

Let us call ¢’ a new collapsing function similar to Madore’s).

We have already seen this function in the section concerning the recursive approach of ordinal collapsing functions, but we will
now see how we can retrieve it from Madore’s 1, with the goal of producing a rationalized variant of it.

First, to be consistent with the rationalized functions previously defined, we would like to have ¢/ («) = €/, instead of (o) = &,.
So '(0) must be equal to ej. As we have e, |, = sup{e,, 5;6;,6;5;% ,...}, it is consistent to define £, = w, because ¢} = ¢¢ =
sup{w,w?, w)

Then we can define ¢’ (o + 1) as the limit or least upper bound of ¢'(«), w’(a)w/(a), w’(a)“/’/(a)w,m, -

Then we can define canonically o' (lim(f)) = lim(n — ¥'(f(n)).

Then we must define 1)’ for the case when it collapses an uncountable ordinal, in such a way that ¢'(f(£2)), for f correctly defined,
is the least fixed point of ¢’ o f, which can be written for example sup{1,v¢’'(f(1)),¥'(f (' (f(1)))),...} as we previously saw. In
RHSO notation, if we write Q = Hysuc 0, this gives : ¢ (Hizyzy ... 2,) = H[Y([suc = 2,0 = y] ® z1... 2z,)](suc 0).

In summary, we can define the v’ function by :

P(0) =w
o ¥'(a+1) = suplv(a), v/ (@) @), p(a) @7
o '(lim(f)) = lim(n — ¢'(f(n))
o (Hizyzy...2n) = H[Y' ([suc = 2,0 = y] @ z1 ... 2,)](suc 0)

Note that this definition does not give exactly the same function as Madore’s 1, apart from the shift of one unit for finite values
due to rationalization : for example, we have 1((o + 1) = Co, but ¥/(Co + 1) = sup{)’(Co), ¥’ (Co)¥ €0), 4/ (o) ¥ €0 “0)’“,} -
E¢o+1 = €/q+1'

Something similar can be done with Buchholz function, defining :

54

Hyzyzy...zn) = HY ([suc = 2,0 = y] ® z1... 2z,)](suc 0)

As we have already seen, other ordinal collapsing functions can be defined similarily by defining the value of ¢'(0) and of
V' (a4 1) = f(¢'(a)) for some function f.

Here is a Scheme inplementation of the v’ variant of Madore’s 1 function :

(define mp (lambda (x)

(if (pair? x)

(if (eq? (car x) ’:) (list (mp (cdr x)))
(cons (mp (car x)) (mp (cdr x))))

x)))

(eval (mp ’(begin

(define last : lambda (1)

if (not : pair? 1) 1 :

if (not : pair? : cdr 1) 1 :
last : cdr 1)

(define butlast : lambda (1)

if (not : pair? 1) ’Q)

if (not : pair? : cdr 1) ’Q)
cons (car 1) : butlast : cdr 1)

(define length : lambda (1)
if (not : pair? 1) O :
+ 1 : length : cdr 1)

(define r2a : lambda (1)

if (not : pair? 1) 1 :

if (pair? : car 1) (r2 : append (car 1) : cdr 1)

if (eq? (car 1) ’suc) (cdr 1)

if (eq? (car 1) ’H) (cons (cadr 1) : cons (list (cadr 1) (caddr 1)) : cdddr 1)

if (eq? (car 1) ’R1) (cons (cadr 1) : cons (cadr 1) : cddr 1)

if (eq? (car 1) ’R2) (cons (cadr 1) : cons (caddr 1) : comns (cadr 1) : cons (caddr 1) : cdddr 1)
1)

(define r : lambda (1)

if (not : pair? 1) 1 :

let ((11 (map r 1)))

if (pair? : car 11) (append (car 11) (cdr 11))
11)

(define r2 : lambda (1) : r : r2a 1)

(define loopr2 : lambda (n 1)

begin (display n) (display " ") (display 1) (newline)
if (equal? n 0) ’Q)

loopr2 (- n 1) (r2 1))

(loopr2 10 ’(R1 H suc 0))

55

(define simplif : lambda (x)
if (not : pair? x) x :
if (not : pair? : cdr x) (car x)

x)

(define subst : lambda (s z a)

if (equal? ’0 a) z :

if (equal? ’suc a) s :

if (not : pair? a) a :

cons (subst s z : car a) (subst s z : cdr a))

(define format : lambda (a)

if (not : pair? a) a :

if (not : pair? : car a) (cons (car a) : map format : cdr a)
format : append (car a) (cdr a))

(define memo ’())

(define find : lambda (a memo)

if (not : pair? memo) ’#f

if (equal? a : caar memo) (cdar memo)
find a : cdr memo)

(define psi : lambda (a)
let ((m : find a memo))
if mm :
let ((b : psil a))
(if (or (not : pair? a) (mot : pair? : car a))

(begin
(display "psi ") (display : format a) (display " = ") (display : format b) (newline)
; (read-char)
; (newline)
)
(set! memo : cons (cons a b) memo)
b)

(define psil : lambda (a)
if (not : pair? a) a :
if (pair? : car a) (psi : myappend (car a) (cdr a))
if (equal? (car a) ’0) ’(H suc 0)
if (equal? ’suc : car a)
(let ((b : psi : cdr a))
if (and (equal? ’(0) : last b)
(equal? ’(suc) : last : butlast b))
(1ist ’R1 (simplif : butlast : butlast b) ’suc ’0)
(1ist ’psi a))
if (and (equal? ’H : car a) (>= (length a) 3))
(1imit (psi : cddr a)
(psi : cdr a)
(psi : cons (cadr a) : cons (list (cadr a) (caddr a)) : cdddr a))
if (and (equal? ’R1 : car a) (>= (length a) 2))
(1imit (psi : cddr a)
(psi : cdr a)
(psi : cons (cadr a) : cdr a))
if (and (equal? ’R2 : car a) (>= (length a) 3))

56

(1imit (psi : cdddr a)
(psi : cdr a)

(psi : cons (cadr a)
if (and (equal? ’H1 :
(let ((b : psi :
limit ’(suc 0)
b

(psi : myappend (subst (cadr a) (caddr a) b)

: cons (caddr a) : cdr a))
car a) (>= (length a) 3))
cdr a))

: cdddr a))
a)

(define myappend : lambda (a b)
if (not : pair? a) (cons a b)
append a b)

(define commonstart : lambda (a b)

if (not : pair? a) (list () a b)

if (mot : pair? b) (list () a b)

if (not : equal? (car a) (car b)) (llst >() a b)

let ((c : commonstart (cdr a) (cdr b)))

let ((com : car c) (difl : cadr c) (dif2 : caddr c))

list (cons (car a) com) difl dif2)

(define limit : lambda (a b c)

if (and (equal?
(equal?
(equal?
(equal?

(cdr a) (cddr b))
(cdr a) (cddr c))

a (cdr b))

(car b) (car c))

(equal? (cadr c) (list (car b) (cadr b))))
(cons ’H b)
if (and (equal? a (myappend (cadr b) (cddr b)))
(equal? (car b) (car c¢))
(equal? (cadr c) (list (car b) (cadr b)))
(equal? (cddr b) (cddr c)))

(cons ’H b)
let ((d : commonstart b c))
let ((com : car d) (difb : cadr d) (difc : caddr d))
if (and (pair? com)
(equal? com : butlast : car difc)
(equal? (car difb) (car : last : car difc))

(equal? a : myappend (car difb) (cdr difb))
(equal? (cdr difb) (cdr difc)))

(cons ’H : cons com difb)
if (and (equal? a : cdr b)
(equal? b : cdr c)

(equal? (car b) (car c))
(equal? (car c) (cadr c)))
(cons ’R1 b)
if (and (equal? a : myappend (cadr b)
(equal? b : cdr c)
(equal? (car c) (cadr c)))
(cons ’R1 b)
if (and (equal? a difb)
(equal? difc :

: cddr b)

cons com difb))

(cons ’R1 : cons com difb)
if (and (equal? a : cddr b)
(equal? b : cddr c)

57

(equal? (car b) (car c))
(equal? (cadr b) (cadr c))
(equal? (car c) (caddr c))
(equal? (cadr c) (cadddr c)))
(cons ’R2 b)
list ’limit a b c)

; (display : psi ’(H H suc 0))
(display : psi ’(H1 suc 0))

; (display : psi ’(H1 suc (H1 suc 0)))
(newline)

)

C implementation :

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef long expr;

int ispair (expr x)

{
return x < 0;
}
int isatom (expr x)
{
return x >= 0;
}
expr atom (char *s)
{
expr Xx;
x = *(int *)s;
if (x < 0 || strlen(s) >= sizeof (expr))
{
printf ("Bad name for atom: %s\n", s);
exit (0);
}
return Xx;
}
struct pair
{
expr fst, snd;
};

#define SIZE 10000000
int npairs = 0;

struct pair mem[SIZE];

58

expr fst (expr x)

{
if (lispair(x))
{
printf ("fst of not pair 0x%X\n", x);
exit (0);
}
return mem[-x-1].fst;
}
expr snd (expr x)
{
if (lispair(x))
{
printf ("fst of not pair 0x%X\n", x);
exit(0);
}
return mem[-x-1] .snd;
}
expr newpair (expr x, expr y)
{
if (npairs >= SIZE)
{
printf ("Overflow\n");
exit (0);
}
mem[npairs].fst = x;
mem[npairs].snd = y;
npairs++;
return -npairs;
}
expr findpair (expr x, expr y)
{
int i;
for (i=0; i<npairs; i++)
{
if (mem[i].fst == x && mem[i] .snd == y)
return -i-1;
3
return O;
}
expr pair (expr x, expr y)
{
expr z;
z = findpair (x, y);
if (2)
return z;
else
return newpair (x, y);
}

expr eq (expr x, expr y)

{

return x ==y,

}
struct charwriter
{
int (*f) (struct charwriter *, char);
};

int writechar (struct charwriter *cw, char c)

{

return (x(cw->f)) (cw,c);

void writeexpr (struct charwriter *cw, expr x)
{

char s[sizeof (expr)+1];

int i;
if (isatom(x))
{

for (i=0; i<sizeof(s); i++)
s[i] = 0;

memcpy (s, &x, sizeof(s));

for (i=0; sl[i]; i++)
writechar(cw,s[i]);

+

else

{
writechar(cw,’-’);
writeexpr(cw,fst(x));
writechar(cw,’ ?);
writeexpr(cw,snd(x));

}

expr zero, suc, H, H1, R1, R2, R3, Psi, lim, w;

#define ap(x,y) pair(x,y)
#define fnc(x) fst(x)
#define arg(x) snd(x)
#define isap(x) ispair(x)
#define isnap(x) isatom(x)

init ()

{
zero = atom("0");
suc = atom("suc");
H = atom("H");
H1 = atom("H1");
R1 = atom("R1");
R2 = atom("R2");
R3 = atom("R3");
Psi = atom("psi");
lim = atom("1lim");
w = ap(ap(H,suc),zero);

expr first (expr a)
{
if (isnap(a))
return ap(atom("fst"),a);
if (isap(fnc(a)) && eq(H,fnc(fnc(a))))
return arg(a);
if (isap(fnc(a)) && eq(R1l,fnc(fnc(a))))
return arg(a);
if (isap(fnc(a)) && isap(fnc(fnc(a))) && eq(R2,fnc(fnc(fnc(a)))))
return arg(a);
return ap(first(fnc(a)),arg(a));
}

expr next (expr a)
{
if (isnap(a))
return ap(atom("nxt"),a);
if (isap(fnc(a)) && eq(H,fnc(fnc(a))))
return ap(fnc(a),ap(arg(fnc(a)),arg(a)));
if (eq(R1,fnc(a)))
return ap(ap(Rl,arg(a)),arg(a));
if (isap(fnc(a)) && eq(R2,fnc(fnc(a))))
return ap(ap(a,arg(fnc(a))),arg(a));
return ap(next(fnc(a)),arg(a));

}

expr subst (expr s, expr z, expr a)
{
if (eq(zero,a))
return z;
if (eq(suc,a))
return s;
if (isnap(a))
return a;
return ap(subst(s,z,fnc(a)),subst(s,z,arg(a)));

}

expr limit (expr a, expr b, expr c)
{
if (isap(b) &&
eq(a,arg(b)) &&
isap(c) &&
eq(fnc(b) ,fnc(c)) &&
eq(b,arg(c)))
return ap(ap(H,fnc(b)),a);
if (isap(b) &&
eq(a,arg(b)) &&
isap(c) &&
eq(a,arg(c)) &&
isap(fnc(c)) &&
eq(fnc(b) ,fnc(fnc(c))) &&
eq(fnc(b) ,arg(fnc(c))))
return ap(ap(R1,fnc(b)),a);
if (isap(b) &&
eq(a,arg(b)) &&

61

isap(c) &&

eq(a,arg(c)) &&

isap(fnc(c)) &&

isap(fnc(fnc(c))) &&

eq(fnc(b) ,fnc(fnc(fnc(c)))) &&

isap(fnc(b)) &&

eq(arg(fnc(b)) ,arg(fnc(c))) &&

eq(fnc(fnc (b)) ,arg(fnc(fnc(c)))))

return ap(ap(ap(R2,fnc(fnc(b))) ,arg(fnc(b))),a);
if (isap(a) && isap(b) && isap(c) &&

eq(arg(a) ,arg(b)) && eq(arg(b),arg(c)))

return ap(limit(fnc(a),fnc(b),fnc(c)),arg(a));
return ap(ap(ap(lim,a),b),c);

#define MAXMEMO SIZE
int nmemo = O;
struct item
{
expr arg;
expr val;
};
struct item memo [MAXMEMO] ;
int count = 0;
int cwf_putchar (struct charwriter *cw, char c)

{

return putchar(c);
}
expr psi2 (int level, expr a);
expr psi (expr a)
{
return psi2(0,a);
}

expr psil (int level, expr a);

expr psi2 (int level, expr a)

{
expr b;
struct charwriter cw;
int i;
for (i=0; i<nmemo; i++)
{

if (eq(a,memo[i].arg))
return memol[i] .val;
}
b = psil(level,a);
memo [nmemo] .arg = a;
memo [nmemo] .val = b;

62

nmemo++;
cw.f = cwf_putchar;
count++;

printf ("\n %6d %3d ", count, level);
writeexpr (&cw, a);

printf ("\n ")

writeexpr (&cw, b);

printf ("\n");

return b;
}
expr psil (int level, expr a)
{
expr b, c, d;
if (eq(zero,a))
return w;
if (isnap(a))
return ap(Psi,a);
if (eq(suc,fnc(a)))
{
expr c;
c = psi2(level+l,arg(a));
if (isap(c) && eq(zero,arg(c)) && isap(fnc(c)) && eq(suc,arg(fnc(c))))
return ap(ap(ap(R1,fnc(fnc(c))),suc),zero);
}
if (isnap(fnc(a)))
return ap(Psi,a);
if (eq(H1,fnc(fnc(a))))
{
expr b, c, d;
b = ap(suc,zero);
¢ = psi2(level+l,ap(arg(fnc(a)),arg(a)));
d = psi2(level+l,subst(arg(fnc(a)),arg(a),c));
return limit(b,c,d);
}
/*if (eq(H,fnc(fnc(a))))
return limit (
psi(arg(a)),
psi(ap(arg(fnc(a)),arg(a))),
psi(ap(arg(fnc(a)),ap(arg(fnc(a)),arg(al))))
);*/
//return limit (psi2(level+l,first(a)), psi2(level+l,first(next(a))), psi2(level+l,first(next(next(a)))));
b = psi2(level+l,first(a));
c = psi2(level+l,first(next(a)));
d = psi2(level+l,first(next(next(a))));
return limit(b,c,d);
//return ap(Psi,a);
}
dump (O
{
int i;
for (i=0; i<npairs; i++)
{

63

printf (" %4d %08X : %08X %08X \n", i, -i-1, mem[i].fst, mem[i].snd);
}

main ()

{
struct charwriter cw;
cw.f = cwf_putchar;

printf(" %d ", sizeof (expr));

expr x;

x = pair (pair (atom("abc"), atom("def")), atom("ghi"));
// x = pair (atom("abc"), atom("def"));

printf("x = %d\n",x);

printf ("mem: %X %X\n", mem[0].fst, mem[0].snd);
writeexpr (&cw,x) ;

printf("\n");
initQ);

expr a, b, ¢, 4, £f;

a = ap(ap(H,suc) ,zero);
b = next(a);

printf ("b = ");
writeexpr (&cw,b);
printf("\n");

a = ap(ap(ap(R1,H),suc) ,zero);
b = first(next(next(a)));
printf ("b = ");

writeexpr (&cw,b);

printf ("\n");

a = ap(ap(ap(ap(R2,R1),H) ,suc),zero);
b = first(next(next(a)));

printf ("b = ");

writeexpr (&cw,b);

printf("\n");

x = atom("x");

f = atom("f");

a = x;

b = ap(f,a);

c = ap(f,b);

d = limit(a,b,c);

printf ("d = ");

writeexpr (&cw,d) ;

printf ("\n");

//a = ap(suc,ap(suc,zero));

//a = ap(ap(ap(H,H) ,suc),zero);
//a = ap(ap(ap(R1,H),suc),zero);

a = ap(ap(H1,suc),zero);

//a = ap(ap(ap(R1,H),suc),ap(ap(Hl,suc),zero));

64

//a = ap(ap(H1,suc),ap(ap(H1,suc),zero));

//a = ap(suc,ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(R2,R1) ,H),suc),ap(ap(H1,suc),zero));

//a = ap(ap(ap(R1,H),suc) ,ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(H,R1),H),suc),ap(ap(Hl,suc),zero));

//a = ap(ap(H,ap(ap(ap(H,R1) ,H),suc)),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(R1,H) ,ap(ap(ap(H,R1) ,H) ,suc)) ,ap(ap(Hl,suc),zero));

//a = ap(ap(ap(H,ap(R1,H)) ,ap(ap(ap(H,R1) ,H),suc)),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(H,ap(H,ap(R1,H))) ,ap(ap(ap(H,R1) ,H),suc)),ap(ap(Hl,suc),zero));
//a = ap(ap(ap(ap(H,H) ,ap(R1,H)) ,ap(ap(ap(H,R1) ,H),suc)),ap(ap(Hl,suc) ,zero));
//a = ap(ap(ap(ap(R1,H),ap(R1,H)) ,ap(ap(ap(H,R1) ,H) ,suc)) ,ap(ap(Hl,suc),zero));
//a = ap(ap(ap(R1,ap(R1,H)) ,ap(ap(ap(H,R1),H),suc)),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(H,R1),H) ,ap(ap(ap(H,R1) ,H),suc)),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(H,ap(ap(H,R1) ,H)) ,suc),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(ap(H,R1),H) ,ap(ap(H,R1) ,H)) ,suc),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(R1,ap(ap(H,R1),H)),suc),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(H,R1) ,ap(ap(H,R1) ,H)) ,suc) ,ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(H,ap(H,R1)),H),suc),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(ap(H,H) ,R1),H),suc),ap(ap(Hl,suc),zero));

//a = ap(ap(ap(ap(ap(R1,H),R1),H),suc),ap(ap(Hl,suc),zero));

//a = ap(ap(H1,suc) ,ap(ap(H1,suc) ,zero));

b = psi(a);

//dump Q) ;

printf ("\na=%X b=4X\n",a,b);
printf("psi ");
writeexpr(&cw,a);

printf (" = ");

writeexpr (&cw,b);
printf("\n");

printf("npairs = %d\n", npairs);

15.9 Correspondence between different ordinal collapsing functions and RHSO notation

15.9.1 Buchholz ¢

e (0)=1=sucO

o Blat1)=pfa)

o () = f0=(a+1) = HfO

e (1) = Hsucd =w

o (2) = H(Hsuc)0 = w?

o Y(a) = [suc — H,0 — sucjal = w™ if o < g

e (Q) = HY0 = H[[suc — H,0 — suc] @ 0]0 = sup{0, suc0, Hsuc0, HH suc0, ...} = RiHsuc0 = gg

o Y(QU+1)=H(RiHsuc)0 =¢g - w

o H(Q+2)=H(H(Ri Hsuc))0 = gq - w?

o Y(Q+ a) = [suc — H,0 — Ry Hsuclal

o Y(Q1-2)=yY(Q+ Q) = H[(Q+)]0 = H[[suc - H,0 — Ry Hsuc| * 0]0 = sup{
07
R1Hsuc0,

65

RiHH(RyHsuc)0 = RyH(RyHsuc)0,
RiH(R1HH)(RyHsuc)0 = RyH(Ry1H)(RyHsuc)0,
..} =Ri(R1H)(R1Hsuc)0 = Ry (R H)sucO = &,
See below proof that Ry (RyH)(RyHsuc)0 = Ry (R H)sucO.
Y(Q-2+41) = H(R(R1H)suc)0
Y(Q-2+42) = H(H(Ri(R1H)suc))0
P2+ a) = [suc - H,0 — Ry (R1H)suc]al
Y(Q-3)=9Y(Q-24+w) = HWY(Q -2+ |0 = H[[suc — H,0 — Ry (R1H)suc| @ 0]0 = sup{

H(Ry (R H)H) (Ry (Ry H)suc)0,
(Ri(R1H)H)(Ri (R H)suc)0
7,/)((2 +2) = Ry(R1H)suc0 we can conjecture (2 - o) = [suc — R1,0 — H]asuc0 which gives ¢(Q - 3)
Ri(R1(R1H))suc0. We can go on with this conjecture.
P(Q - a) = [suc = R1,0 — H]asuc)
(%) =9(Q-Q) = H[(Q -)]0 = H[[suc — Ry,0 — H] o suc0]0 = sup{
Oa
H suc0,
H Ry Hsuc0,
HRiHRy HsucO,
..} = RaR1 Hsuc0
At this point, the general formula for ¢ (2*) is not clear and we have to go on with :
$(Q% + 1) = H(ReRy Hsuc)0

¢(Q2 2) H(H(R2R1Hsuc))0

(% +) = [suc — H,0 — Ry Ry Hsucla0

(0% + Q) = H[Y(Q? + ¢)]0 = H[suc — H,0 — Ry Ry Hsuc] @ 0]0 = sup{
0,

Ro Ry Hsuc0,

RQRlHH(RQRlHSUC)O = RgRlH(RgRlHSUC)O

RgRlH(RQRlHH)(RQRlHS’LLC)O = RleH(RgRlH)(RgRlHSUC)O
. } = Rl (RgRlH)(RQRlHS’U,C)O = Rl(RgRlH)S’U,CO

¢(Q2 + Q4+ 1) = H(Rl(RgRlH)S’U,C)O

2/}(92 +Q+ 2) = H(H(Rl (RgRlH)SUC)O

(2 +Q+ a) = [suc — H,0 — Ri(RaRy H)sucla0

(2 +Q-2) = H|[suc — H,0 — Ri(RaRy H)suc] 0]0 = sup{

0

R1 (Rle)SUCO
Rl (R2R1) (Rl(RQRlH)SUC)O,
R1(R2R1) (Rl(R2R1H)H)(R1(RgRlH)SUC)O
. } = Rl (Rl(RgRlH)H>(R1(RQRlH)SUC>O = R1<R1(R2R1H>H>SUCO = Rl(Rl (RgRlH))SUCO

(% + Q- a) = [suc +< Ry,0 — RaRy H]agsuc0
(02 2) = (02 + Q- Q) = H|[suc — R1,0 — RyR1H] e suc0]0 = sup{
Oa
Ry Ry H sucO,
RgRlHRl (RleH)SUCO,
R2R1HR1 (RleH)Rl (R2R1H)SUCO,
. } = R2R1<R2R1H)SUCO
(0% a) = [suc — RaR1,0 — H]asuc
»(Q3) = H[[suc — RaR1,0 — H] e suc0]0 = sup{
0,
Hsuc0,
H(R2Rq)H suc0,
H(RgRl)H(RgRl)HSUCO,
. } = RQ(RgRl)HSUCO

66

o (0% = [suc = Ra,0 — Ri]aH suc0
o U(Q%) = H[Y(Q)]0 = H|[suc — R2,0 — Ri] & Hsuc0]0 = sup{

=

Rleuco,

R1R2R1HSUCO,

RleRlHRleHSUCO,
. } = R3R2R1H8’LLCO

Proof that Ry (R1H)(R1Hsuc)0 = Ry (R H)suc0 :

Let us start with the equality 1 4+ &1 = ¢3.

In RHSO notation, it gives Ri(R; H)suc(suc0) = Ry (R1H)sucO.

We have seen previously that e = [suc — R1H,0 — suc|a0.

If we apply it to the previous equality, we get Ry (R1H)(R1H)(RyHsuc)0 = Ry(RyH)(R1H)sucO.
But for any x we have Ryxx = R;x.

So we get Ry (R1H)(RyHsuc)0 = Ry(RyH)suc0. QED.

15.9.2 Variant of Madore
e (0) = Hsuc) = w

o)
1) = ¢(a)?
= fsucd = Y(a+ 1) = Ry fsucO
R{Hsuc0 = ¢g
R1(R1H)suc0
= [suc = R1,0 — H]asuc0 = &/,

M=o R
I +

= =

) = Rl (RgRlH)S’U,CO

) Rl (Rl (RgRlH))S’U,CO

a) = [suc = R1,0 = RoRy Hlasuc0

-2)=Y(Q+ Q) = H{(2 +)]0 = H[[suc — R1,0 — RaR1 H| e suc0]0 = sup{

Sssssesssss

LIRS
M+++

=

Ry Ry H suc0,
RgRlHRl (RleH)SUCO,
RQRlHRl (RleH)Rl (RgRlH)S’LLCO,
..} = ReR1(RyR H)sucl =
’(/)(Q 24 1) Ry (R2R1(R231H))SUCO
(Q 24+ 2) Ry (Rl(RgRl (RQRlH)))SUCO
(24 a) =[suc = R1,0 = RaRy(R2R1 H)|asuc0
(

()
()
()
07
R2R1 (RleH)SUCO,
R2R1 (RleH)Rl(R2R1 (RleH))SUCO,
RoRi(RoR1H)R1(RoRy (ReR1H))R1 (RoR1 (RoR1 H)) sucO,
. } = RQRl(RgRl (RQRlH))SUCO

o (- a) = [suc = RaRy,0 — HlasucO
o H(Q?) =(Q-Q) = H[W(Q-e)]0 = H|[suc — RyR1,0 — H]| o suc0]0 = sup{

07

HsucO,

H(R2R1)H suc0,

H(R2R1>H(R2R1)HSUCO,

. } = RQ(R2R1)HSUCO

o () = [suc = R2,0 — Ry]aH suc0
o () = H[p(2*)]0 = H[[suc — Ra,0 — Ry] ® Hsuc0]0 = sup{
07

67

= Hy0 = H|[suc — R;,0 — H]| o suc0]0 = sup{0, Hsuc0, H Ry Hsuc0, HRy H Ry H suc0, . .

N-3)=¢(Q-24+Q)=H[¢p(2-2+ ¢]0 = H[[suc — R1,0 = RyRy1(RaR1 H)]asuc0]0 = sup{

} = RQRlHSUCO = C()

Ry Hsuc0,
RlHRQRlHS’LLCO,
RlHRQRlHRQRlHSUCO,
.. } = R3R2R1HSUCO

15.9.3 Generic ordinal collapsing function

e Y(0)=zap—1...a9

e Y(a)= fap—1...a0=>Y(a+1)=sfan—1...a0

e (1) =sza,-1...a9

o Y(2) =s(sz)an—1...a9

e Y(a) = [suc = 5,0 = zlaan_1 ... ag

e () = HY0 = H[[suc — 5,0 = z] @ ay,_1 ...a0]0 = sup{0,zan_1...a9,...} =2'al,_1...q}

e Y(Q+1)=s2al,_,...q

o Y(Q+2)=1s(s")al,_;...q0

e Y(Q+a)=[suc—s,0 = 2aal, ;...af

e Y(N-2)=9y(Q+Q) = H[tp(w + ¢)]0 = H[[suc — 5,0 — 2’| ®al,_; ...a(]0
Buchholz :

e z = suc

e ap=0

o s=H

e 2/ = Ri{Hsuc

e ay=0

Madore variant :

e x=H

e a3 = suc;ag =0
e s=R;

o 2 =Ry RWH

e a} = suc;al =0

15.9.4 Other example of ordinal collapsing function

We will consider the ordinal collapsing function defined as the instantiation of the previous generic ordinal collapsing function
with :

e =Ry
e a0 = H;a; = suc;ag =0
e s= Ry

Then we have :

o (0) = Ry1Hsucl =g

o (o) = fHsuc) = (a+ 1) = Ry f Hsuc0

e (1) = RoR1 Hsuc0 = (o

o (2) = Ry(RaRy)H suc0

o (a) = [suc = R2,0 — Ri]aH suc0

e () = HY0 = Hl[suc = Ry,0 = R;] @ Hsuc0]0 = sup{0, Ry Hsuc0, Ry H Ry Ry Hsuc0, Ry HRa Ry HRy Ry Hsucl, ...} =
R3 Ry Ry HsucO which gives 2’ = R3RoRy; 0, = H;a) = suc;ay =0

° ’(/)(Q + 1) = RQ(RgRgRl)HSUCO

° ’(/)(Q + 2) = RQ(RQ(RgRgRl))HSUCO

e Y(Q+ a) = [suc = Ry,0 = R3RoR1]aH suc0

68

o Y(Q-2) = H(Q+9)

07

RgRgRlHSUCO,

R3R2R1HR2(R3R2R1)HSUCO,

R3R2R1HR2 (R3R2R1)HR2 (R3R2R1)HS’LLCO,
} R3R2(R3R2R1)HSUCO

’L/J(Q 2+ 1) Rz(RgRQ(RgRQRl))HSUCO

w(Q 2+ 2) Ry (RQ(RgRQ (RgRQRl)))HS'LLCO

w(-2 4 0[) [S’LLC — RQ, 0— R3R2(R3R2R1)]OZHSUCO

P(-3)=y(Q-24+Q) =

= H[(Q +)]0 = H[[suc — Ry,0 — R3RyR:1] @ Hsuc0]0 = sup{

Oa
R3R2 (RgRQRl)HSUCO,
R3R3(R3RyR1)H Ry(R3 Rz (R3 Ry Ry)) H suc,
RsRy(R3RyR1)HRy(R3R2(RsRoR,))HRy(R3R2(RsRoRy)) Hsuc0,
. } = R3R2(R3R2(R2R2R1))HSUCO
o Y(Q-a)=[suc > R3R2,0 — Ri]aH suc0
o (%) =y(Q-Q) = H[t(Q-)]0 = H[[suc = R3R2,0 — R;] ® Hsuc0]0 = sup{
Oa
R1 Hsuc0,
RlH(R:gRQ)RlHSUCO,
R1H(RgRg)RlH(RgRQ)RlHSUCO,
e = R3(R3R2)R1HSUCO
o (Q%) = [suc = R3,0 — Ro]aR1 Hsuc0
e (0% = H[Y(Q2°]0 = H[[suc — R3,0 — Ry] @ Ry Hsuc0]0 = sup{
Oa
Ry Rq H sucO,
RgRlHR:gRQRlHSUCO,
RleHRgRQRlHRgRQRlHSUCO,
. } = R4R3R2R1H$UCO

15.9.5 Comparison

H[p(Q2- 2+ o]0 = H[[suc — R2,0 — R3Ra(R3R2R1)] @ Hsuc0]0 = sup{

If we compare the correspondences for the Buchholz OCF, the variant of the Madore OCF and the third example of OCF, it
seems more complicated for the Buchholz OCF, the simplest for the variant of the Madore OCF, and almost as simple for the

third example.

We have already seen in the previous section (Correspondence between Madore’s 1) and other notations) that we can go easily
very far with the correspondence between Madore OCF and RHSO0 notation.

15.9.6 Summary table of some values of Madore variant ¢ with RHSO0 notation

a (@)
0 H suc 0
1 =suc0 g0 = R1HsucO
2 = suc (suc 0) Ry (Ry H)suc0
w=Hsuc0 HRyHsuc0
g0 = R1Hsuc0 R{HR{Hsuc0
Q = H;suc0 RsR1 Hsuc0
Q4+ 1 = suc(Hysuc0) Ry (RoR1 H)suc0
0-2= Hlsuc(Hlsuc()) Rle(RQRlH)SUCO
0% = H,(H,suc)0 Ro(RoRy)H suc0
QQ = H1H18UCO R3R2R1HSUCO
0% = HyH Hysuc0 | R4R3RoRyHsuc0

We can see that informally, we have somethink like "1 (a) =

and depends on the position of H; and R,,.

[Hi — R,,suc — Ry1,0 = H| a suc 0” where n is greater than 1

69

15.9.7 Computing Madore variant ¢y in RHZ0 representation : slow method

The following rule is used :

Y(Hyzyz ... 2n) = HY([suc — 2,0 — y] @ 21 ... 2,)]0

Example :

o (Q%) = (HyHysuc0) = H[y)([suc — Hy,0 — suc] 0)]0 = sup{

0,
Y(suc0) = Ry HsucO,

V(R HHysuc0) =

15.9.8 Computing Madore variant ¢ in RHZO0 representation : fast method

Method : To compute ¥(Hyzyz1 ... z,), compute ¥ (z(xy)z1 ...2,). If it gives something in the form '(z'y")z}

Y(Hyzyzy ... 2n) = H[[suc — 2',0 — y'] e 2] ... 2]0.
Example :

0?) = op(Hy Hysuc0)

Hy(Hqsuc)0)
c(Hysuc0))

suc(Hysuc0)))

c0)

m%b:

18U
18U
suc sucO)

uc(

o

) = Hsuc0

suc(suc0)) = Ry (R H)sucO
o

=g

1suc0) = H[[suc — Ry1,0 — H] e suc0]0 = Ry Ry Hsuc0

su suc(HlsucO))) Ri1(Ry(RaR1H))suc0

Hysuc(Hysuc0)) = H[[suc — R1,0 — RaRy H] @ suc0]0 = RyRy(RaR1 H)suc0
Hl(Hlsuc)O = H[[suc — RaR;,0 — H] e suc0]0 = Ro(R2R1)H suc0
HyH,suc0) = H|[[suc — R2,0 — R;] ¢ Hsuc0]0 = R3Ro Ry H suc0

® 6 o6 o6 o o o o o o o o o
S T TR Lt
(e

Scheme implementation :

(define mp (lambda (x)

(if (pair? x)

(if (eq? (car x) ’:) (list (mp (cdr x)))
(cons (mp (car x)) (mp (cdr x))))

x)))

(eval (mp ’(begin

(define cadddr : lambda (x)
car : cdr : cdr : cdr x)

(define last : lambda (1)

if (not : pair? 1) 1 :

if (not : pair? : cdr 1) 1 :
last : cdr 1)

(define butlast : lambda (1)

if (not : pair? 1) ’Q)

if (not : pair? : cdr 1) ’Q
cons (car 1) : butlast : cdr 1)

(define length : lambda (1)

70

4

/
no

then

if (not : pair? 1) O :
+ 1 : length : cdr 1)

(define r2a : lambda (1)

if (not : pair? 1) 1 :

if (pair? : car 1) (r2 : append (car 1) : cdr 1)

if (eq? (car 1) ’suc) (cdr 1)

if (eq? (car 1) ’H) (cons (cadr 1) : cons (list (cadr 1) (caddr 1)) : cdddr 1)

if (eq? (car 1) ’R1) (cons (cadr 1) : cons (cadr 1) : cddr 1)

if (eq? (car 1) ’R2) (cons (cadr 1) : cons (caddr 1) : comns (cadr 1) : cons (caddr 1) : cdddr 1)
1

(define r : lambda (1)

if (not : pair? 1) 1 :

let ((11 (map r 1)))

if (pair? : car 11) (append (car 11) (cdr 11))
11)

(define r2 : lambda (1) : r : r2a 1)

(define loopr2 : lambda (n 1)

begin (display n) (display " ") (display 1) (newline)
if (equal? n 0) ’Q)

loopr2 (- n 1) (r2 1))

; (Loopr2 10 ’(R1 H suc 0))

(define simplif : lambda (x)
if (not : pair? x) x :
if (not : pair? : cdr x) (car x)

x)

(define subst : lambda (s z a)

if (equal? ’0 a) z :

if (equal? ’suc a) s :

if (not : pair? a) a :

cons (subst s z : car a) (subst s z : cdr a))

(define format : lambda (a)

if (not : pair? a) a :

if (not : pair? : car a) (cons (car a) : map format : cdr a)
format : append (car a) (cdr a))

(define memo ’())

(define find : lambda (a memo)

if (not : pair? memo) ’#f

if (equal? a : caar memo) (cdar memo)
find a : cdr memo)

(define psi : lambda (a)

let ((m : find a memo))

if mm :

let ((b : psil a))
(if (or (not : pair? a) (mot : pair? : car a))
(begin

71

(display "psi ") (display : format a) (display " = ") (display : format b) (newline)

; (read-char)
))
(set! memo : cons (cons a b) memo)
b)

(define psil : lambda (a)
if (not : pair? a) a :
if (pair? : car a) (psi : myappend (car a) (cdr a))
if (equal? (car a) ’0) ’(H suc 0)
if (equal? ’suc : car a)
(let ((b : psi : cdr a))
if (and (equal? ’(0) : last b)
(equal? ’(suc) : last : butlast b))
(list °R1 (simplif : butlast : butlast b) ’suc ’0)
(1ist ’psi a))
if (and (equal? ’H : car a) (>= (length a) 3))
(1imit (psi : cddr a)
(psi : cdr a)
(psi : cons (cadr a) : cons (list (cadr a) (caddr a)) : cdddr a))
if (and (equal? ’R1 : car a) (>= (length a) 2))
(1imit (psi : cddr a)
(psi : cdr a)
(psi : cons (cadr a) : cdr a))
if (and (equal? ’R2 : car a) (>= (length a) 3))
(1imit (psi : cdddr a)
(psi : cdr a)
(psi : comns (cadr a) : cons (caddr a) : cdr a))
if (and (equal? ’H1 : car a) (>= (length a) 3))
(let ((b : psi : cdr a)) :
limit ’(suc 0)
b
(psi : myappend (subst (cadr a) (caddr a) b) : cdddr a))
a)

(define myappend : lambda (a b)
if (not : pair? a) (cons a b)
append a b)

(define commonstart : lambda (a b)

if (not : pair? a) (list () a b)

if (mot : pair? b) (list () a b)

if (not : equal? (car a) (car b)) (llst () a b)

let ((c : commonstart (cdr a) (cdr b)))

let ((com : car c¢) (difl : cadr c) (dif2 : caddr c))
list (cons (car a) com) difl dif2)

(define limit : lambda (a b c)
if (and (equal? (cdr a) (cddr b))
(equal? (cdr a) (cddr c))
(equal? a (cdr b))
(equal? (car b) (car c¢))
(equal? (cadr c) (list (car b) (cadr b))))
(cons ’H D)
if (and (equal? a (myappend (cadr b) (cddr b)))
(equal? (car b) (car c))

72

(equal? (cadr c) (list (car b) (cadr b)))
(equal? (cddr b) (cddr c)))
(cons ’H b)
let ((d : commonstart b c))
let ((com : car d) (difb : cadr d) (difc : caddr d))
if (and (pair? com)
(equal? com : butlast : car difc)
(equal? (car difb) (car : last : car difc))
(equal? a : myappend (car difb) (cdr difb))
(equal? (cdr difb) (cdr difc)))
(cons ’H : cons com difb)
if (and (equal? a : cdr b)
(equal? b : cdr c)
(equal? (car b) (car c))
(equal? (car c) (cadr c)))
(cons ’R1 b)
if (and (equal? a : myappend (cadr b) : cddr b)
(equal? b : cdr c)
(equal? (car c) (cadr c)))
(cons ’R1 b)
if (and (equal? a : cddr b)
(equal? b : cddr c)
(equal? (car b) (car c))
(equal? (cadr b) (cadr c))
(equal? (car c) (caddr c))
(equal? (cadr c) (cadddr c)))
(if (and (pair? a) : equal? (car a) (car b))
(cons ’R2 : cons (cadr b) a)
(cons ’R2 b))
if (and (equal? a : cdddr b)
(equal? b : cdddr c)
(equal? (car b) (car c¢))
(equal? (cadr b) (cadr c))
(equal? (caddr b) (caddr c))
(equal? (car c) (car : cdddr c))
(equal? (cadr c) (cadr : cdddr c))
(equal? (caddr c) (caddr : cdddr c)))
(cons ’R3 b)
; if (and (pair? : cdr a)
; (pair? : cdr b)
; (pair? : cdr c))
; (limit (cons (list (car a) (cadr a)) : cddr a)
; (cons (1list (car b) (cadr b)) : cddr b)
; (cons (list (car c) (cadr c)) : cddr c))
list ’limit a b c)

(define substsz : lambda (s z x)

if (equal? ’suc x) s :

if (equal? ’0 x) z :

if (not : pair? x) x :

let ((a : substsz s z : car x)
(b : substsz s z : cdr x))

;if (pair? a) (append a b)

cons a b)

(define fpsi : lambda (a)

73

if (not : pair? a) a :
if (pair? : car a) (fpsi : myappend (car a) (cdr a))
if (equal? (car a) ’0) ’(H suc 0)
if (equal? ’suc : car a)
(let ((b : fpsi : cdr a))
if (and (equal? ’(0) : last b)
(equal? ’(suc) : last : butlast b))
(1ist ’R1 (simplif : butlast : butlast b) ’suc ’0)
(list ’psi a))
if (and (equal? ’H : car a) (>= (length a) 3))
(1imit (fpsi : cddr a)
(fpsi : cdr a)
(fpsi : cons (cadr a) : cons (list (cadr a) (caddr a)) : cdddr a))
if (and (equal? ’R1 : car a) (>= (length a) 2))
(1imit (fpsi : cddr a)
(fpsi : cdr a)
(fpsi : comns (cadr a) : cdr a))
if (and (equal? ’R2 : car a) (>= (length a) 3))
(limit (fpsi : cdddr a)
(fpsi : cdr a)
(fpsi : cons (cadr a) : cons (caddr a) : cdr a))
if (and (equal? ’H1 : car a) (>= (length a) 3))
(let ((b : fpsi : cdr a)
(c : fpsi : cons (cadr a)
cons (list (cadr a) (caddr a))
cdddr a))
let ((cs : commonstart b c))
let ((com : car cs) (difl : cadr cs) (dif2 : caddr cs))
if (and (equal? (car dif2) : append com : list : car dif1l)
(equal? (cdr dif1l) (cdr dif2)))
(let ((x1 : append (substsz com (car difl) ’(suc 0)) : cdr difl))
let ((x2 : append (substsz com (car difl) x1) : cdr difl))
;begin (display : list "b=" b "; c=" c "; com=" com " ;difl=" difl "; dif2=" dif2 " ;x1=" x1 "; x2=" x2)

;if (equal? (car c) (car (cadr c)))
; (let ((x1 : append (substsz (car c¢) (cadr : cadr c¢) ’(suc 0)) : cddr c))
; let ((x2 : append (substsz (car c¢) (cadr : cadr c¢) x1) : cddr c))
; let ((x3 : append (substsz (car c¢) (cadr : cadr c¢) x2) : cddr c))
limit ’(suc 0) x1 x2)
list ’psi a)
list ’psi a)

; (display : psi ’(H H suc 0))
(let ((x ’(H1 H1 suc 0)))
(display ’psi)

(display x)

(display " = ")
(display : fpsi x)
(newline)

)

)))

Result : psi(H1 H1 suc 0) = (R3 (R2) (R1) H suc 0)

74

15.10 Correspondence between Madore) variant and Simmons notation

Reminder :

Fiz fC= f*(C+1)

Next = Fixz w® = Fiz(a — w®) ; Next ¢ is the next e, after (.
[0]h = Fiz[h®w]

[1lhg = Fix[h®gw]

2lhgf = Fiz[h*gfu]

0)=w

a+1) = Next ()

1) = Next w

2) = Next’w

«a) = Next“w

) = Fiz[Next*w|w = [0]Next w
14 1) = Next([0]Next w)

Q+

a) = Next®([0]Next w)
)

Ssssesscscsxees

Q-2) =(Q+ Q) = Fiz[Next® ([0]Nextw)|w = [0] Next([0] Next w)
Q- a) = ([0]Next)*w

02) =9(Q- Q) = Fiz[([0] Next)*w|w

Q%) = [0]*Next w

O = Fiz[[0]* Next wjw = [1][0] Next w

15.11 Feferman 6 function

Feferman’s f-functions constitute a hierarchy of single-argument functions 6, : On — On for a € On.[4] It is often considered a
two-argument function with 6,(3) written as faS. It is defined like so:

00(04,5) = 5U{03w17w27"'7ww}
Crti(e, B) = {v+6,0:(m)]y,6,&m € Cn(a, B); € < a}
Cle,f) = | CuleB)

n<w

0a(8) = min{y|y & C(a,7) AVS < B:0,(5) <~}

Informally:

An ordinal 3 is considered a-critical iff it cannot be constructed with the following elements: all ordinals less than 3, all ordinals
in the set {0,wi,ws,...,w,}, the operation +, applications of 8¢ for £ < a. 6, is the enumerating function for all a-critical
ordinals.

The Feferman theta function is considered an extension of the two-argument Veblen function — for @ < Ty, 0,(8) = wa ().
For this reason, ¢ may be used interchangeably with 6 for o < T'y. Because of the restriction of £ € Cy, (e, 8) imposed in the
definition of Cj,11(c, 8), which makes fr, never used in the calculation of C set when o < €2, § function does not grow until
a < Q. This results in 0q(0) = I'y while pq(0) = Q. The value of 0q(0) = T'g can be used above Q because of the definition of
Co which includes €2 = w;. The supremum of the range of the function is the Takeuti-Feferman-Buchholz ordinal 6., ., (0).
Buchholz discusses a set he calls §(w+1), which is the set of all ordinals describable with {0, w1, ws, .. .,w, } and finite applications
of 4+ and 6.

Below you can see rules to assign fundamental sequences for the Feferman theta-function at least up to Large Veblen ordinal
(they are same as rules for finitary/transfinitary Veblen function from previous post , but I rewrote them for the application for
theta-function). Here theta-function is considered as a two-argument function with 6¢(y) written as 6(€,).

If a limit ordinal « is written in next normal form

a = 0(513’71) + 0(523’72) +-+ a(gka’yk),

75

where
0(&1,71) > 0(&2,72) > (&c,%)
=000 i + Q%2 q g4+ Qi L, for all i € {1, ..., k} where
ﬂz,l > /81,2 > > ﬁz,nl fel 0)
Q; g > 1 for all] S {1, ...,’I’Li},
n; is a non-negative integer,
0(&k, k) is a limit ordinal,
ﬂi,j,ai,j,% < g(fi,’yi) for all 7 € {1, ...,k‘}7] S {17 ...,ni}7
k is a positive integer,
then a[n] = 0(&1,71) + 0(82,72) + - - + (&, i) [n]
If write a limit ordinal as (- -- + QP* - ag,~) where dots - - - denote Zi.:ll 05y,
then
1)if k = 0 then (- -- + QP* - ay,~) = 6(0,7) and in this case:
1 1) 6(0,v) = w7,
1.2) 6(0,0) = w® =1,
1.3) 6(0,7)[n] = 0(0,y — 1) - n = w?¥~!n if 7 is a successor ordinal,
1.4) 6(0,7)[n] = 9(0 y[n]) = WM if 5 is a limit ordinal,
15) (9(1)+ +000,7))[n] = 0(0,71) + -+ +60(0,7) [n], where
71 2 2 Yk 2 17
Tm < 9(0,7m) for all m € {1, ..., k},
2) if B = 0 then Q% - a;, = ay and in this case:

2.1) 0(-- - + a, 0)[0] = 0

and (- -+ ap,0)[n+ 1] =0(-- - + o, — 1,0(- - - + ag, 0)[n]) if oy is a successor ordinal,
22)0(- -+ ag,y+D[0] =0+ ag,y) +1

and 0(- -+ ap,y+ 1)[n+1]=0(--- + o — 1,0(- - - + o, v + 1)[n]) if o, is a successor ordinal,
2.3) 0(- -+ ag,y)[n] = 0(- - + ag,y[n]) if v is a limit ordinal,

24)0(- + o, 0)[n] = 0(- - + o [1,0) if ay, is a limit ordinal,

25)0(- +ap,y+ 1[n] =0(-+ arn],0(-- -+ ak,v)) if ay is a limit ordinal,

3) if By > 0 then:
3.1) (- -- 4+ QPk - ay,0)[0] = 0
and O(- -+ Q5% -, 0)[n + 1] = 0(-- -+ Q% - (o — 1) + Q%=1 (0(--- + QP -y, 0)[n]), 0)
if a and By are successor ordinals,
32) 0(-- -+ QP - ap,y)[0] = 0(- - + QP - ap,y — 1)+ 1
and 6(--- + OBk . ag,Y)[n+1]=0(--+ OBk . (ap — 1)+ OBk—1. O+ OBk . ak,y)[n]),0)
if a, and (j are successor ordinals,
3.3) 0(--- 4+ QP - ag,y)[n] = 0(- - + QP - ay, y[n]) if v is a limit ordinal,
3.4) 0(--- 4+ QP - a,0)[n] = 0(-- - + Q% - (ag[n]),0) if ay, is a limit ordinal and By, is a successor ordinal,
3.5) (- + Q% - g,)] = 0(- - + QP - (ag[n]) + Q=1 (O(- - + QP -,y — 1) + 1),0)
if o is a limit ordinal, By and -y are successor ordinals,
3.6) (- + QP -y, 0)[n] = (- - - + QP - (o, — 1) + QP17 0) if B} is a limit ordinal and ay, is a successor ordinal,
3.7)0(-- 4+ QP ap,Y)[n] =0(- + Q% - (o, — 1) + QB (9(- - + Q% -y, y — 1) 4+ 1),0)
if B is a limit ordinal, oy and -y are successor ordinals,
3.8) O(--- 4+ QP -y, 0)[n] = (- - - + Q% - (ag[n]),0) if B and oy, are limit ordinals,
3.9) 0+ Q%% - ap,)] = 0(--- + QP - (ag[n]) + Q%M (O(- - + QP - ag, v — 1) +1),0)
if B and «y are limit ordinals and = is a successor ordinal.
Large Veblen ordinal 6(Q%,0)[0] = 0 and 6(Q2, 0)[n + 1] = §(Q°©@*0In] ().
Note: 6(&,0) can be abbriviated as 0(&).

References :

http://googology.wikia.com /wiki/Ordinal_notation
http://googology.wikia.com /wiki/User_blog:Denis_Maksudov/Fundamental_sequences_for_the_theta-function

76

15.12 Hypcos 0 function

0 function is a binary function. It’s defined as follows:

e Co(a, B) = {7y < B}U{0}.

e Coyi(a, B) = {y+6]7,0 € Cn(a,)} U{0(7,8)|y < a&,d € Crla, B)} U{Qc|c € Crla, B)}.
e C(a,) = UpcwCi(a, B)

o 0(a, B) = min{c| (c € Cla,7)& (V6 < B:v > 0(,8))}

where (g = 0 and 2, represents the a-th uncountable ordinal.

It means that 0(a, §) is the (14 3)-th ordinal such that it cannot be built from ordinals less than it by addition, applying 6(4, . ..)
where § < a and getting an uncountable cardinal.
It seems that 0(«, 8) = p(«, 8) below Iy, making 6 function an extension of ¢ function. Even 6(Tg, 8) = ¢(To, §) is true.

Other important values are :

e 0(Q,a) =T,

e 9(Q2*,0) = small Veblen ordinal

e 0(02%,0) = large Veblen ordinal

e 0(eq+1,0) = Bachmann Howard ordinal

Reference: https://stepstowardinfinity. wordpress.com/2015/05/04/ordinal2/

15.13 Deedlit’s extension of hierarchy of J-functions with ¢ and (2,
15.13.1 Definition

C()(V,Cl7ﬁ) = 5 U QV U {0}

Cn+1(V>avﬁ) = {’7 + 5a90('7a5)»9'y7797(77) : 7;6777 € Cn(V,CY”B);?? < a}
Cv,a,f) = UncwCr(v, a, B)

Py(a) =min({f < Qi1 : C(,0,) N Qi1 CHAaEC(r,a, B)} U{Q41})

15.13.2 Standard form

e If @ =0, then the standard form for « is 0.

e If o is not additively principal, then the standard form for o is @ = a7 + as + - - - + o, where the «; are principal ordinals
with ay > ag > -+ - > «y, and the o; are expressed in standard form.

e If o is an additively principal ordinal but not a strongly critical ordinal, then the standard form for « is @ = (3, y) where
v < « where 8 and «y are expressed in standard form.

o If o is of the form Qg, then {23 is the standard form for a.

o If v is a strongly critical ordinal but not of the form g, then « is expressible in the form ¥, (). Then the standard form
for «w is a = 9, () where v and v are expressed in standard form.

15.13.3 Fundamental sequences

For ordinals o < ¥(§2q,), written in normal form, fundamental sequences are defined as follows:

o If & =0, then cof(e) = 0 and « has fundamental sequence the empty set.

o If a = ¢(0,0) =1 then cof(a) =1 and a[0] =0

o f =1 +as+ -+ ay, then cof(a) = cof(,) and a[n] = a1 + as + -+ + (an[n])

o If = p(B,v) where ~ is a limit ordinal then cof(«) = cof(v) and «a[n] = ¢(8,v[n])

o If a = ¢(0,7+1) then cof(ar) = w and aln] = ¢(0,7) -

o If a=p(B+1,0) then cof(a) = w and a[0] = 0 and a[n + 1] = ¢(5, an))

o If a=¢(f+ 1,7+ 1) then cof(a) =w and a[0] = (8 + 1,7) + 1 and a[n + 1] = ¢(5, aln))

7

If o = ¢(B,0) where § is a limit ordinal then cof(a)) = cof(8) and «[n] = ¢(5[n],0)

If « = (8,7 + 1) where § is a limit ordinal then cof(a) = cof(3) and aln] = ¢(B[n], ¢(8,7) + 1)

If & = Qp4q then cof(a) = Q11 and afn] =7

If a = Qg where $ is a limit ordinal then cof(a) = cof(f) and a[n] = Qg

If « =9,(8+1) then cof(a) = w and a[0] =4, (8) + 1 and a[n + 1] = ¢(a[n],0)

If o = ¥, (8) where w < cof(8) < Q, then cof(a) = cof(8) and a[n] = ¥, (B[n])

If o = 9,(B) where w < cof(8) = Quy1 > Q, then cof(a) = w and afn] = 9, (B[y[n]]) with y[0] = Q, and ~[n + 1] =
Op(Bly[nl])

Reference: http://googology.wikia.com/wiki/List_of_systems_of_fundamental_sequences

15.14 Deedlit’s extension of hierarchy of J-functions without ¢ and (2,
15.14.1 Definition

00(04,6) = B

C"H-l(a?ﬂ) = {7 + 5’ 19"/(77) : %5,77 € Cn(%ﬁ)ﬂ? < Oé}

C(Ol,ﬂ) = Un<wcn(avﬁ)

9,(0) = min{8 : [wh| = 0, C(a, 6) N s C fra € Cla,)}

15.14.2 Standard form

e If @ = 0, then the standard form for « is 0.

e If « is not additively principal, then the standard form for « is @ = a3 + as + - - - + a,, Where the «; are principal ordinals
with a1 > as > --- > a,, and the «; are expressed in standard form.

e If o is additively principal, then « is expressible in the form ¥, (). Then the standard form for « is a = ¥, () where v
and v are expressed in standard form.

15.14.3 Fundamental sequences

For ordinals o < ¥(f2q,), written in normal form, fundamental sequences are defined as follows:

If @ =0, then cof(«) = 0 and « has fundamental sequence the empty set.

If o = 99(0) =1 then cof(a) =1 and «[0] =0

If a =a;+as+ -+ ap, then cof(a) = cof(a,) and a[n] = a1 + as + -+ + (an[n])
If o = 9341(0) then cof(a) = Q41 and afn] =7

If a= 195() where f3 is a limit ordinal then cof(a) = cof() and a[n] = I3, (0)

If a =9,(8+1) then cof(a) = w and a[n] = 9,(8)n

If @« = 9,(8) where w < cof(8) < Q, then cof(a) = cof(5) and a[n] = 19 +(Bn)

If a = 9, (8) where cof(8) = Q.41 >, then ¢ f(a) =w and a[n] = 9, (B[y[n]]) with v[0] = Q, and vy[n+ 1] =9,.(B[v[n]])

Note that these fundamental sequences are the same as those of Buchholz 1, functions.
These fundamental sequences can be reformulated :

(0=0)

Uo(0) =

(standard definition of addition of a limit ordinal)
Up+1(0) = Qa41

ﬁLiTYLMf(O) = leu(g — ’L9f(5) (O))

9y (Lim, f) = Lim, (Y, o f) if p <v

Oy (Limyq1 f) =lim(§ = 9, (f (D 0 f)f(Q#)) fu+l>v

Reference: http://googology.wikia.com/wiki/List_of_systems_of_fundamental _sequences

78

15.15 Going further with ordinal collapsing functions

We began to define ordinal collapsing functions that collapse an ordinal named €2 or 21 which has to be greater than all ordinals
we want to define, which are recursive ordinals. We could take w{'¥ the least non recursive (but still countable) ordinal for 2,
but this could lead to some technical complications, so wy, the least uncountable ordinal, which can be identified to the cardinal

Ny, is generally chosen. Then we saw we can go further using greater uncountable ordinals named 29,3, ... for which we can
take ws,ws, ... which can be identified to the corresponding cardinals Ny, N3,.... A way to go further with ordinal collapsing
function is to collapse more and more large uncountable ordinals (or corresponding cardinals) like wy,, wy,,, - . . and much further.

Before studying some of these functions collapsing these large cardinals, we will see how we can build these large cardinals.

16 Cardinals

Each ordinal has a cardinality which is a cardinal number (or more briefly a cardinal). The cardinality is a generalization of the
notion of number of elements of a set. Two sets have the same cardinality if there exist a bijection (a one-to-one correspondence)
between them. The least ordinal whose cardinality is a given cardinal is called the initial ordinal of this cardinal.

The cardinality of w is called ¥, and it is also the cardinality of w41, w-2,w?,w*”, €y, o, . . . and more generally of any countable
ordinal.

w1 is the least uncountable ordinal, and its cardinality is the cardinal N;.

More generally, the cardinality of the ordinal w, is the cardinal N,,.

Some authors identify ordinals and cardinals, writing w, = R,,.

The cardinals 3, are defined by :

e Jy =N
[] :a+1 = 2:0‘
o 1) = sup{J¢|€ < X if A is a limit ordinal

According to the generalized continuum hypothesis (GCH), R,y = 2%, If this hypothesis is accepted, then X, = 3, for any
ordinal a.

A cardinal R, is said to be a limit cardinal (or weak limit cardinal) if « is a limit ordinal.

A cardinal & is a strong limit cardinal if whenever v < k then 27 < k. Thus, the strong limit cardinals are those cardinals closed
under the exponential operation. The strong limit cardinals are precisely the cardinals of the form 3y for a limit ordinal A.

A weakly inaccessible cardinal is a regular limit cardinal, or an uncountable regular limit cardinal according to some authors.
A strongly inaccessible cardinal, or inaccessible cardinal, is a regular strong limit cardinal, or an uncountable regular strong limit
cardinal according to some authors.

Every strongly inaccessible cardinal is also weakly inaccessible, as every strong limit cardinal is also a weak limit cardinal. If the
generalized continuum hypothesis holds, then a cardinal is strongly inaccessible if and only if it is weakly inaccessible.

The weakly inaccessible cardinals are the regular fixed points of the N function o — N,, which means that the following
propositions are equivalent :

e x is a weakly inaccessible cardinal
o N, =rAcof(k) =k

Reference :

https://math.stackexchange.com/questions/3413563 /weakly-inaccessible-cardinal-equivalent-to-regular-aleph-fixed-point
The inaccessible cardinals are the regular fixed points of the 3 function o — 3.

Reference :

https://mathoverflow.net/questions/64955 /is-there-a-least-fixed-point-formulation-of-inaccessible-cardinals

It can be proved that if a cardinal x is weakly inaccessible, then it is the x-th fixed point of the function & — .

Proof by Joel David Hamkins :
https://mathoverflow.net/questions/117806/if-k-is-weakly-inaccessible-then-it-is-the-k-th-aleph-fixed-point

If k is weakly inaccessible, then it is a limit cardinal and hence x = X for some limit ordinal A. Since the cofinality of Xy is the
same as the cofinality of A, it follows by the regularity of x that A = k, and so kK = X,;, an N-fixed point.

The next R-fixed point after any ordinal By must have cofinality w, since it is sup,, 8,, where 3,41 = Ng, . So if a weakly
inaccessible k is the d-th N-fixed point, it cannot be that § is a successor ordinal, and so ¢ is a limit ordinal. Since the N-fixed
points are closed, this implies k has the same cofinality as §, and so by regularity it follows that x = § and thus, is the x-th
fixed point.

79

Degrees of inaccessibility can be defined for weak inaccessibility and for strong inaccessibility, so the following holds replacing
”inaccessible” by ”weakly inaccessible” or ”strongly inaccessible”.
A cardinal « is said to be 1-inaccessible if it is inaccessible and the following equivalent conditions hold :

e x is a limit of inaccessible cardinals
e There are k inaccessible cardinals less than « (or in k).
e x is the k-th inaccessible cardinal, or equivalently x is a fixed point of the function & — &-th inaccessible cardinal

These definitions can be generalized to any degree : & is (a + 1)-inaccessible if it is a-inaccessible and the following equivalent
conditions hold :

e x is a limit of a-inaccessible cardinals
e There are k a-inaccessible cardinals less than x (or in k)
e £ is the k-th a-inaccessible cardinal

More generally, x is a-inaccessible if it is inaccessible and for every § < «, the following equivalent conditions hold :

e £ is a limit of B-inaccessible cardinals
e There are k [-inaccessible cardinals less than x (or in k)
e is the k-th B-inaccessible cardinal

A cardinal & is hyperinaccessible (or (1,0)-inaccessible) if it is x-inaccessible.
Degrees of hyperinaccessibility can be defined like degrees of inaccessibility : x is a-hyperinaccessible if it is inaccessible and, for
every 8 < «, the following equivalent conditions hold :

e x is a limit of S-hyperinaccessible cardinals
e There are k S-hyperinaccessible cardinals less than « (or in k)
e k is the k-th S-hyperinaccessible cardinal

& is hyperhyperinaccessible or hyper?-inaccessible if it is xk-hyperinaccessible, and so on.

More generally :

K is hyper®-inaccessible if it is hyperinaccessible and for every 8 < «, it is -hyper®-inaccessible.

k is a-hyperP-inaccessible if it is hyper-A-inaccessible and for every v < «, the following equivalent conditions hold :

e k it is a limit of y-hyper®-inaccessible cardinals
e There are k v-hyper®-inaccessible cardinals less than x (or in)
e % is the k-th y-hyper?-inaccessible cardinal.

Sources :

http://cantorsattic.info/Inaccessible

https://math.stackexchange.com/questions/477314 /hyper-inaccessible-cardinals
https://arxiv.org/pdf/1506.03432.pdf : Force to change large cardinal strength by Erin Carmody

In http://forums.xked.com/viewtopic.php?p=2585190#p2585190, Deedlit defines a generalization of these levels of inaccessibility
which looks like the Veblen function at a higher level. He writes («, 8)-weakly inaccessible for S-hyper®-weakly inaccessible.
Here are his definitions :

”Define a cardinal to be 0-weakly inaccessible if it is a regular limit cardinal.
(A cardinal alpha is regular if it is not the union of fewer than alpha many smaller ordinals; a cardinal is limit if it is wa for «
limit.)

A cardinal is a+1-weakly inaccessible if it is an a-weakly inaccessible cardinal and a limit of a-weakly inaccessible cardinals.
A cardinal is -weakly inaccessible for 8 limit if it is a-weakly inaccessible for all o < .

A cardinal « is (1,0)-weakly inaccessible if it is a-weakly inaccessible.

A cardinal « is (2,0)-weakly inaccessible if it is (1,«)-weakly inaccessible.
A cardinal « is («,0)-weakly inaccessible for « limit if it is (3,0)-weakly inaccessible for all 5 < .

80

A cardinal « is (1,0,0)-weakly inaccessible if it is («,0)-weakly inaccessible.

A cardinal « is (2,0,0)-weakly inaccessible if it is (1,a,0)-weakly inaccessible.

A cardinal « is («,0,0)-weakly inaccessible for « limit if it is (3,0,0)-weakly inaccessible for all § < .
and so on.

Denote (a@8,b@6,c@4,d@1) to mean (a,0,b,0,¢,0,0,d), for instance. This notation allows us to go express transfinite places like
(1Qw)

A cardinal is (1@Qw)-weakly inaccessible if it is (1@n)-weakly inaccessible for all n < w.
A cardinal is (2Qw)-weakly inaccessible if it is (1@Qw,1@n)-weakly inaccessible for all n < w.
A cardinal « is (a@uw)-weakly inaccessible for a limit if it is (SQw)-weakly inaccessible for all 5 < a.

and so on.
More generally,

A cardinal v is (al@bl, a2@b2,..., an+1@1)-weakly inaccessible if it is (al@bl, a2@b2,..., an@1)-weakly inaccessible and a limit
of (al@bl, a2@b2,..., an+1@Q1)-weakly inaccessible cardinals.

A cardinal v is (al@bl, a2@b2,..., an+1@bn+1)-weakly inaccessible if it is (al@b1, a2@b2,..., an@bn+1, y@bn)-weakly inacces-
sible.

A cardinal 7 is (al@bl, a2@b2,..., an+1@bn)-weakly inaccessible (with bn limit) if it is (a1l@bl, a2@b2,..., an@bn, 1Qc)-weakly
inaccessible for all ¢ < bn.

A cardinal v is (al@bl, a2@b2,..., an@bn)-weakly inaccessible (with an limit) if it is (al@b1, a2@b2,..., c@bn)-weakly inaccessible
for ¢ < an.”

Finally, we define I(al@b1, a2@b2,..., an@bn,c@0) to be the ¢’th (al@bl, a2@b2,..., an@bn)-weakly inaccessible cardinal.”

There is a correspondence between inaccessible cardinals and Veblen and Simmons hierarchies.

In both case, there is a function f that, given some ordinal «, produces a greater ordinal f(a). A way to get large ordinals is
to enumerate the fixed points of this function. For Veblen and Simmons hierarchies, this function is & — w® or [w®], and for
inaccessible cardinals it is € — N¢ or [N,], but since we want to get regular cardinals, we have to consider regular fixed points.
The least fixed point of € — w® is g = &/ = ¢(1,0) = ¢/(0,1). Tt is the limit of w,w*,w*”,.... In a similar way, we can define
Ey=E{ =®(1,0) = ®(0,1) as the least regular fixed point of £ — .

Then, like we have defined &1 = ¢, = p(1,1) = ¢'(0,2) as the second fixed point of £ — w®, we can define £y = F} as the second
regular fixed point of § — Ne.

More generally, like we defined e, = €, as the 1+ a-th fixed point of £ — w¢, we can define E, = F 1o 8 the 1+ a-th regular
fixed point of £ — N¢.

Then, like we defined (o = ('l = ¢(2,0) = ¢’(1,1) as the least fixed point of — e¢, the limit of €, e.,,..., we can define
Zy = Z] as the least regular fixed point of £ — E¢, the limit of Fy, Eg,, This is the least ordinal s such that x = E,, = k-th
fixed point of £ — X¢ (the ”14” being absorbed). This is the least weakly inaccessible ordinal.

We can also use the Simmons notation to produce weakly inaccessible cardinals.
Remember this notation :

Fixf{ = f“(¢+ 1) is the least fixed point of f that is strictly greater than (.
Next = Fiz(a — w®)

[0)h = Fiz(a — h™0)

[1)hg = Fiz(a — h*g0)

[2)hgf = Fiz(a — h%gf0)

We can define the following similar functions for weakly inaccessible cardinals :

FIX f(is the least regular fixed point of f that is strictly greater than (.
NEXT = FIX(a— R,)

[[0]]h = FIX (o — h®0)

[[1]]hg = FIX (o — h*¢0)

[2)hgf = FIX (a > h*gf0)

81

With this notation, NEXT 0 = Ey = ®(1,0) = (0, 1) is the least regular R fixed point, which is the least weakly inaccessible
cardinal. NEXT(NEXT 0) = NEXT?0 = E; = E}, = ®(1,1) = ®(0,2) is the next regular X fixed point, which is the second
weakly inaccessible cardinal. More generally, NEXT*0 = E/, = (0, «) is the a-th inaccessible cardinal.

The least 1-weakly inaccessible cardinal is the least x such that x is the x-th weakly inaccessible cardinal, which can be written
k=NEXT"0. Thisis [[0]]NEXT 0= FIX(a+— NEXT*0)0 = Zy = Z] = ®(2,0) = ®'(1,1), the least regular cardinal x such
that Kk = NEXT"0 which means that is the x-th weakly inaccessible cardinal.

The a-th 1-weakly inaccessible cardinal is ([[0]]NEXT)*0 = Z/, = ®'(1, o).

The least 2-weakly inaccessible cardinal is the least x such that x is the x-th 1-weakly inaccessible cardinal, which can be
writtenk = ([[0]]NEXT)%0. This is [[0]]([[0]]NEXT)0 = [[0]2NEXT 0 = ®(3,0) = ®'(2,1).

More generally, the least a-weakly inaccessible cardinal is [[0]]*NEXT0 = ®(1 + «,0) = ®'(a,1) and the S-th a-weakly
inaccessible cardinal is ([[0]]*NEXT)?0 = @'(a, 3).

The least hyper-weakly inaccessible cardinal is the least x such that is k-inaccessible, which can be written x = [[0]]* NEXT 0.
This & is [[1]][[0]] NEXT 0 = ®(1,0,0).

The second one is ([[1]][[0]] NEXT)?0, and more generally the a-th one is ([[1]][[0]] NEXT)<0.

Then, & is 1-hyper-weakly inaccessible if & is the x-th hyper-weakly inaccessible cardinal, which can be written x = ([[1]][[0]] NEXT)"0.
This is [[0]] ([[1]] [[0]] NEXT) 0. The second one is ([[0]]([[1]][[0]] NEXT))20, and the a-th one is ([[0]]([[1]][[0]] NEXT))<0.
Similarily, the least 2-hyper-weakly inaccessible cardinal is [[0]]2([[1]][[0]] NEXT)0 and the a-th one is ([[0]]?([[1]][[0]] NEXT))>0
More generally, the a-th B-hyper-weakly inaccessible cardinal is ([[0]]([[1]][[0]] NEXT))*0 = ®'(1, 3, a).

The least hyper-hyper-weakly inaccessible cardinal, or hyper? weakly inaccessible cardinal is the least » such that is x-hyper-
weakly inaccessible, or x = [[0]]%([[1]][[0]] NEXT)0, which is [[1]][[0]]([[1]][[0]] NEXT)0 = ([[1]][[0]])? NEXT 0.

More generally, the least hyper?-weakly inaccessible cardinal is ([[1]][[0]])” NEXT 0, and the a-th one is (([[1]][[0]])Y NEXT)<0.
The least 1-hyper”-weakly inaccessible cardinal is the least x such that x is the k-th hyper”-weakly inaccessible cardinal, or
= (([IJ[0]))" NEXT)*0. This « s ([0])(([[1][[0]])” NEXT)0.

More generally, the least S-hyper?-weakly inaccessible cardinal is [[0]]° (([[1]][[0]])” NEXT)0.
Finally, the a-th B-hyper”-weakly inaccessible cardinal is ([[0]]%(([[1]][[0]])" NEXT))O‘O =d'(v,5,).
We can also define higher inaccessiblility degrees corresponding to ®'(d,~, 8, «) and so on, with finitely and transfinitely many

variables.

In ”Force to change large cardinal strength” (https://arxiv.org/pdf/1506.03432.pdf) Erin Carmody defines greatly inaccessible
cardinals which have every possible inaccessible degree. Carmody shows that a cardinal is greatly inaccessible if and only if it
is Mahlo. In page 3 (page 11 of PDF document) Erin Carmody says ”Since greatly inaccessible cardinals are every possible
inaccessible degree, as defined in chapter 1, Mahlo cardinals are every possible inaccessible degree defined”. Having every possible
inaccessible degrees is the equivalent of being greater than any ordinal definable with the Veblen function with transfinitely many
variables, or with Schiitte Klammersymbols, whose limit is the large Veblen ordinal which can be written ”[[2]] [[1]] [0] Next 07
with Simmons notation. So the least Mahlo cardinal can be written ”[2] [1] [[0]] NEXT 0”.

17 Correspondence between cardinals and non recursive countable ordinals

Collapsing functions require ordinals which are greater than all ordinals defined by these collapsing functions, i.e. recursive
ordinals. We use some unspecified ordinals called €2y, 9, 3, If we want to specify them, the uncountable ordinals w1, ws, w3,
which can be identified with the cardinals R;, Xz, N3, ... can be chosen, but the non recursive ordinals w{'%, w§X CK ,... where
w§K is the least admissible ordinal after w${'® and so on, are also valid. More generally, there is a correspondence between
cardinals and non recursive countable ordinals. There are equivalents of inaccessible, hyperinaccessible, Mahlo, ... cardinals in
the domain of non recursive countable ordinals, called recursively inaccessible, recursively hyperinaccessible, recursively Mahlo,

etc...

Here is a table summarizing this correspondence :

Non recursive countable ordinals | Uncountable ordinals
Admissible ordinal Cardinal
wlc K w1, Nq
recursively inaccessible inaccessible
recursively hyperinaccessible hyperinaccessible
recursively Mahlo Mahlo
II3-reflecting compact

82

18 Functions collapsing large cardinals

Collapsing functions can be used to collapse large cardinals to produce large ordinals.
Some examples of such collapsing functions are given in :
https://sites.google.com/site/travelingtotheinfinity/
http://googology.wikia.com/wiki/Ordinal notation

http://googology.wikia.com/wiki/List_of systems_of_fundamental_sequences
http://cantorsattic.info/Cantor%27s_Attic

18.1 Hypcos’s functions collapsing weakly inaccessible cardinals
18.1.1 Definition

Qq with a > 0 is the a-th uncountable cardinal, I, with a > 0 is the a-th weakly inaccessible cardinal and for this notation
Iy =Qp =0.

In this section the variables p, m are reserved for uncountable regular cardinals of the form €, or I,41.
Then,

Co(, B) = pU{0}

Cn-i-l(avﬁ) = {ry + 6|77 NS Cn(aa 6)}

U{Q, |y € Cu(a, B)}

U{Ly|y € Cn(a, B)}

U{n(y)Im, v € Cula, B) Ay < a}

Cla,B) = U, < Cn(@,)

Yr(a) = min{8 < 7|C(a, f) N7 C B}

18.1.2 Properties
Ur(0) =1

Yo, (@) = w® for a < g
Q. (a)=wtt for1<a<eq 41 and v >0
v41 v+

18.1.3 Standard form for ordinals o < 8 = min{{|I; = £}

The standard form for 0 is 0

If o is of the form §g, then the standard form for « is @ = Qg where 8 < o and 3 is expressed in standard form

If « is of the form Ig, then the standard form for o is @ = Ig where < o and f is expressed in standard form

If « is not additively principal and « > 0, then the standard form for v is a = a1 + as + - - - + «,,, where the a; are principal
ordinals with a; > as > --- > a,,, and the «; are expressed in standard form

If o is an additively principal ordinal but not of the form Qg or I, then « is expressible in the form 9, (6). Then the standard
form for o is a = 9 (6) where 7 and ¢ are expressed in standard form

18.1.4 Fundamental sequences

The fundamental sequence for an ordinal number o with cofinality cof(a) = f is a strictly increasing sequence (a[n]),<s with
length 8 and with limit «, where a[r] is the -th element of this sequence.

Let S = {a|cof(ar) = 1} and L = {«afcof(ar) > w} where S denotes the set of successor ordinals and L denotes the set of limit
ordinals.

For non-zero ordinals written in standard form fundamental sequences defined as follows:

Ifa=a;+as+- -+ «a, with n > 2 then cof(a) = cof(a,) and afn] = a1 + ag + -+ + (an[n])
If o = 9 (0) then o = cof(a) =1 and «[0] =0

B B an=Q, -nifv>0
If @ = 9q,,, (1) then cof(a) = w and { oy = nifv =0

If a =g, ,(B+1) and B > 1 then cof(a) = w and a[n] = va,,, (8) -1

If a =4y, (1) then cof(a) = w and a[0] = I, + 1 and a[n + 1] = Q,y

If a =4y, ,(B+1)and § > 1 then cof(o) = w and «[0] =4y, ,, () + 1 and a[n + 1] = Qqp;
If & = 7 then cof(a) = 7 and «afn] = ¢

If o =Q, and v € L then cof(a) = cof(v) and a[n] = Q[

®© N W N

83

9. If « = I, and v € L then cof(a) = cof(v) and a[n] = I,
10. If & = ¢, (B) and w < cof(B) < 7 then cof(a) = cof(B) and «[n] = ¥ (8[n])
11. If & = ¢-(B) and cof(8) = p > 7 then cof(a) = w and a[n] = ¥ (B[y[n]]) with v[0] = 1 and v[n + 1] = ¥, (B[y[n]])

Limit of this notation is A. If a = A then cof(a) = w and a[0] =1 and a[n + 1] = I,

These fundamental sequences can be reformulated giving the following recursive definitions :

1. Classical definition of addition of limit ordinals
2. a(0) = 1

3a. 1p(h (1) =w

3b. Yo, (1)=Q, - wifr>0

4. ¢Qu+1 (ﬁ + 1) = w9u+l (6) TWw

5. i, (1) = [QW](1, +1)

6. V1, (B+1) = [(r,.,, () + 1) if B> 1

8. Qpim,, f = Limy,[Qja)]

9. ILim“f = Limu [If(.)}

10 ¢ (Lim, f) = Limy(Yro f) if w, <7

11 e (Limy, f) = lim[x(f (Yo, o £)*(1))] if w, > 7

18.1.5 References

http://googology.wikia.com /wiki/List_of_systems_of_fundamental sequences
https://sites.google.com/site/travelingtotheinfinity /hypcos-s-notation-with-weakly-inaccessibles

18.2 Functions collapsing a-weakly inaccessible cardinals
18.2.1 Definition

An ordinal is a-weakly inaccessible if it’s an uncountable regular cardinal and it’s a limit of ~-weakly inaccessible cardinals for
all v < au

Let I(a, 8) be the (1+ 8)th a-weakly inaccessible cardinal if 8 =0or 8 =~v+1, and I(«, 8) = sup{I (e, &)|¢ < B} if B is a limit
ordinal.

As we saw previously, using Simmons notation, we can write I(a, 3) = ([0]'T*NEXT)'*0 with NEXT = Fiz[X,],[0]h =
Fix[h*0] and Fizf(= f“(C+1).

In this section the variables p, 7 are reserved for uncountable regular cardinals of the form I(a,0) or I(a, 8+ 1).

Then,

Co(a, B) = BU{0}

Cn+1(()é, 6) = {’7 + 6|’Y? o€ Cn(a’ ﬂ)}

U{I(7,9)]v,6 € Cp(a, B)}

U{r(7)Im, v € Cula, B) Ay < a}

C(a, ﬁ) = Un<w Cu(a,B)

Yr(a) = min{8 < 7|C(a, f) N7 C B}

18.2.2 Properties

I(Oa a) - Ql_t,-a = Nl—i—a

I(]‘? a) =lita

Yr(0,0) () = w® for a < g

Vr0,041)(B) = w! OO0 for B < erg 041

18.2.3 Standard form for ordinals a < 1;(1,0,0)(0) = min{{|I(&,0) = £}

The standard form for 0 is 0

If « is of the form I(f,~), then the standard form for « is a = I(8,) where 8,7 < a and 3, are expressed in standard form
If « is not additively principal and « > 0, then the standard form for « is a = a1 + as + - - - + a,,, where the a; are principal
ordinals with a; > as > --- > a,,, and the «; are expressed in standard form

If « is an additively principal ordinal but not of the form I(8,+), then « is expressible in the form . (d). Then the standard
form for «v is a = 9 (0) where 7 and ¢ are expressed in standard form

84

18.2.4 Fundamental sequences

The fundamental sequence for an ordinal number o with cofinality cof(a) = f is a strictly increasing sequence (a[n]),<s with
length 8 and with limit «, where a[r] is the n-th element of this sequence.

Let S = {a|cof(ar) = 1} and L = {«a|cof(ar) > w} where S denotes the set of successor ordinals and L denotes the set of limit
ordinals.

For non-zero ordinals o < ty(1,0,0y(0) written in standard form fundamental sequences defined as follows:[2]

1. fa=a;+as+ -+ a, with n > 2 then cof(a) = cof(a,) and a[n] = a1 + as + -+ + (an[n])
2. If & = v1(0,0)(0) then o = cof(ar) = 1 and «[0] = 0
3. If a = v1(9,841)(0) then cof(a) = w and a[n] = 1(0,B) - n
4. If a =1y, (y+1) and § € {0} US then cof(a) = w and an] = Y15 (7) -7
5. If & = ¥1(341,0)(0) then cof(a) = w and a[0] = 0 and «a[n + 1] = I(B, an])
6. If & = ¥r(g41,4+1)(0) then cof(a) = w and a[0] = I(B +1,7) + 1 and afn + 1] = I(3, aln])
7. If a =vYr41,4)(0 +1) and v € {0} US then cof(a) = w and a[0] = ¢1(541,4)(6) + 1 and afn + 1] = I(5, a[n])
8. If & = vy(5,0y(0) and 8 € L then cof(a) = cof(3) and «[n] = I(B[n],0)
9. If @ = ¥y(,441)(0) and f € L then cof(a) = cof(3) and a[n] = I(B[n], I(5,v)+ 1)
10. If a = 1y(3,4)(0 +1) and 3 € L and v € {0} U S then cof(a) = cof(5) and a[n] = I(B[n], ¥rs,~)(0) + 1)
11. If & = 7 then cof(a) = 7 and «a[n] =7
12. If a = I(B,~) and v € L then cof(a) = cof(y) and afn] = I(8,v[n])
13. If @ = ¢ (8) and w < cof(B) < 7 then cof(a) = cof(8) and «[n] Ye(B])
14

. If o =9 (8) and cof(f) = p > 7 then cof(o) = w and a[n] = ¥ (B[y[n]]) with v[0] =1 and v[n + 1] = ¢, (B[y[n]])
(

Limit of this notation 1(1,0,0)(0). If & = ¥1(1,0,0)(0) then cof(a) = w and «[0] = 0 and a[n + 1] = I(a[n],0)

These fundamental sequences can be reformulated giving the following recursive definitions :

1. Classical definition of addition of limit ordinals

Y1(0,0)(0) =1

Yr00,8+1)(0) = 1(0,3) - w

V1,8 (v +1) = Y10, (7) - w if B is not a limit ordinal

77/11r(5+1,0)(0) = [I(B,)]“(0)

Vrpr1441)(0) = [1(B,0)]“(I(B+ 1,7) + 1)

Vr(a11,4)(0 +1) = [1(B, 0)]“(¥r(s+1,7)(0) + 1) if v is not a limit ordinal
w[(Limy f, O)() LZmN [I(f(.)7 0)]

9. Yr(Lim,f, 4+1)(0) = Limy,[1(f(e), I(Limy f,v) + 1)]

10. Yr(Lim, £,)(0 + 1) = Lim,[I(f(®),%1(Lim, £,1)(0) + 1)] if 7 is not a limit ordinal
12 I(BaLzmﬂf) Lzm#[‘[(ﬂaf(.))]

13. Y (Lim, f) = Lim,(¢Yr o f) ff w, <7

14. Yr(Limy f) = lim[r(f((Yw, 0 £)*(0)] if w, > 7

P NSO N

18.2.5 References

http://googology.wikia.com /wiki/List_of systems_of_fundamental_sequences
https://sites.google.com/site/travelingtotheinfinity /the-collapsing-functions-using-math-alpha-beta-math—weakly-inaccessible-
cardinals

18.3 Jager’s collapsing functions

Jager’s collapsing functions are a hierarchy of single-argument ordinal functions ¢, introduced by German mathematician
Gerhard Jéger in 1984. This is an extension of Buchholz’s notation.

18.3.1 Basic Notions

My is the least Mahlo cardinal, small Greek letters denote ordinals less than M. Each ordinal « is identified with the set of
its predecessors o = {3|8 < a}.
L denotes the set of all limit ordinals less than Mj.

85

An ordinal « is an additive principal number if & > 0 and £ + 7 < « for all £, < a. Let P denote the set of all additive
principal numbers less than M.

a=Nypa1+- - Fa, Sa=a1+ -Fa, Nay > > a, ANag,...,a, € P

Cofinality cof(a) of an ordinal « is the least /5 such that there exists a function f : f — « with sup{f(£)|§ < 8} = a. An
ordinal « is regular, if « is a limit ordinal and cof(«) = . Let R denote the set of all regular ordinals € (w, Mp).

An ordinal « is (weakly) inaccessible if « is a regular limit cardinal larger than w.

Enumeration function F of class of ordinals X is the unique increasing function such that X = {F(«)|a € dom(F)} where
domain of F, dom(F) is an ordinal number. We use Enum(X) to donate F.

18.3.2 Veblen function

¢o = Enum({8 € P|Vy < a(p,(8) = B)})
Normal form

a=nr (7)) & a=ps(7) AB,y<a

An ordinal « is a strongly critical if p(«,0) = a. Let S denote the set of all strongly critical ordinals less than M.
Definition of S() for arbitrary ~.

S(y) ={r}ifye SU{0}

S(y) ={a1,.,antify=nrpar+--+a, ¢ P

S(’Y) = {avﬁ} if’Y =NF Qoa(ﬂ) ¢ S

18.3.3 p-Inaccessible Ordinals

An ordinal is p-inaccessible if it is a regular cardinal and limit of a-inaccessible ordinals for all & < p. So the O-inaccessible
ordinals are exactly the regular cardinals > w, the 1-inaccessible ordinals are the inaccessible ordinals. Functions I,, : My — My
enumerate the p-inaccessible ordinals less than M, and their limits.

Io = Enum({8 € R|Vy < a(I,(8) = B)})

Normal form

a=nplg(7) e a=Ig(y) Ay ¢L

Definition of v~ for v € R.

v~ =0ify =nF 14(0)

Y= Ia(ﬁ) 1f’7 =NF Ia(ﬂ + 1)

”’Properties”’
Veblen function p-Inaccessible Ordinals
pa(p) € P 14(0),1a(B+1) € R
’Y<(X:><p’y(30a(ﬁ)):<pa(6) 77<O‘:>I'y(ja(ﬂ))zla(ﬁ)
B <7 = ¢a(B) < ¥aly) B<v=1Ia(B) <1a(7)
a < B = 9.0) < ps(0) a < fB=1,0) < Is(0)

18.3.4 The Ordinal Functions

Every v, is a function from My to x which ”collapses” the elements of My below k. By the Greek letters x and m we shall
denote uncountable regular cardinals less than M.
”’Inductive Definition”’ of Cy () and 3, ().
{k"}UK™ C CY ()

S(y) € Ci(a) = v € CH(a)

B,v € Ca) = Is(7) € CiH(a)
y<T<kATECHa)=ve Cr(a)

v<aAy,m e () Ay € Cr(y) = ¥r(7) € CF ()
Cr(a) = U{CF(a)ln <w}

nla) = min{€l¢ ¢ Cula)}

Normal form

a=nF Pu(B) & a =1 (B) A B € Cu(B)

86

18.3.5 Fundamental sequences

The fundamental sequence for an ordinal number a with cofinality cof(a) = 8 is a strictly increasing sequence (a[n]),<g with
length S and with limit «, where a[n] is the n-th element of this sequence.
”’Inductive Definition”’ of T'.

0eT

a=Nr a1+ - -Fa, Nay,...,a, €ET =aecT
a=np pg(V)ABYyET =>acT
Ot:NFIQ(’)/)/\ﬂ,’}/ETéOZET
a:pr,{(B)/\/i,ﬂETﬁaeT

Below we write I(«, 8) for I,(8) and ¢(a,) for v (5)
For non-zero ordinals a € T' we define the fundamental sequences as follows:

o If a=¢(0,8+ 1) then cof(a) = w and a[n] = ¢(0,5) xn

o If o = ¢(B + 1,0) then cof(a) = w and «[0] = 0 and «[n + 1] = ¢(8, an])

o If = ¢(B+1,7+1) then cof(a) = w and a[0] = p(8+ 1,7) + 1 and an + 1] = ¢(8, a[1])
o If a = ¢(8,0) and 8 € L then cof(a) = cof(3) and «a[n] = ¢(B[n],0)

e If o= (8,7 +1) and f € L then cof(a) = cof(8) and afn] = (8], 9(8,7) + 1)

o If o = ¢(B,7) and v € L then cof(a) = cof(y) and aln] = ¢(8,v[n])

If o = 97(0,0)(0) then cof(a) = w and a[0] = 0 and a[n + 1] = p(a[n],0)
o If a = 1(0,341)(0) then cof(a) = w and a[0] = I(0, 5) + 1 and a[n + 1] = p(a[n],0)
o Tf o = y0,5)(7 + 1) then cof(@) = w and af0] = ¥y0,6)(7) + 1 and al+ 1] = p(al],0)

o If & = 9Y7(541,0)(0) then cof(a) = w and «[0] = 0 and a[n + 1] = I(B, a[n])
o If & = 1(341,4+1)(0) then cof(a) = w and a[0] = I(B +1,7) + 1 and o[y + 1] = I(B, a[n])
o If & =11(341,4)(0 + 1) then cof(a) = w and a[0] = ¥r(s41,4)(0) + 1 and a[n + 1] = I(3, a[n])

70)
), 1(8,7) + 1)
B, Y1) (6) +1)

o If o = v;(5,0)(0) and B € L then cof(a) = cof(3) and aln] = I(5[n]
o If a =1(3,4+1)(0) and B € L then cof(a) = cof() and a[n] = I(j
If & = 93,4 (0 + 1) and § € L then cof(cr) = cof(3) and afn] = I(

Ifa=a;+as+ -+ a, with n > 2 then cof(a) = cof(ay,) and a[n] = a1 + as + -+ - + (@ [n))

If & = ¢(0,0) then cof(e) = a =1 and «[0] =0

If a =1(B,0) or a« =I(B,y+ 1) then cof(a) = a and an] =7

If = I(B,v) and v € L then cof(«) = cof(y) and «fn] = I(5,7[n])

If o = ¢, (B) and w < cof(5) < 7 then cof(a) = cof(B) and «[n] = ¥ (B[n])

If a = ¢z () and cof(8) = p > 7 then cof(a) = w and a[n] = = (Bly[n]]) with ¥[0] = 1 and y[n + 1] = ¢, (B[y[n]])

Limit of this notation A. If @ = X then cof(a) = w and «[0] = 0 and «a[n + 1] = I(a[n],0)
These fundamental sequences can be reformulated to produce recursive definitions :

e ©(0,8) = =P

* (B + 1 ,0) = [p(B,0]°0 = H[p(B, *)]0

e p(B+1,7+1)=[p(B,9)]“(p(B+1,7)+1)

L4 @(L’&myﬁ) LZmy[gD(fo,O)]

o p(Lim, f,v+1) = Lim,[p(fe, p(Lim, f,7) + 1)]
e ©(B, Lim,g) = Lim,[p(B, ge)]

® 11(0,0)(0) = [p(e,0)]“0 =T
® r0,5+1)(0) = [p(e,0)]*(1(0,8) + 1)
® V1o, (Y +1) = [p(e,0)](Wr0,8(7) +1)

L ¢1([3+1,0) (0) = [1(B,9)]“0

87

® Vrp+14+1)(0) = [I(B,@)]*(I(B+1,7) +1)
® Vg1 (0+1) = [I(B,0)]*(Vr(p+1,4)(5) +1)

® U1(Lim, 1,0)(0) = Lim,[I(fe,0)]
® Vr(Lim, fy+1)(0) = Limy, [I(fe, I(Lim, f,v) + 1)
® Vr(Lim, fy) (0 + 1) = Lim, [I(fe,Yr(Lim, £,4)(0) + 1)]

e B+ Lim,g = Lim,[B + ge]
¢(0,0) =1

I(B,0) = I(B,7 + 1) = Limeop(1(8,0)[®] where [o] is the identity function
I(ﬂ? Liml/g) = Lim, [I(ﬂa g.)]

Ur(Limy, f) = Limy [(fe)] if w, <7

o V. (Limy f) = lim[t(f(¥w, o £)*(1))] ifw, > 7

18.3.6 References

1. W.Buchholz. A New System of Proof-Theoretic Ordinal Functions. Annals of Pure and Applied Logic (1986),32

2. M.Jager. p-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlagenforsch
(1984),24

3. http://cantorsattic.info/J%C3%Adger%27s_collapsing functions_and_%CF%81-inaccessible_ordinals

18.4 Rathjen’s functions collapsing the least weakly Mahlo cardinal
18.4.1 Definition of Jager’s function

I, : M — M which enumerate the a-inaccessible ordinals less than M and their limits

I, = Enum({3 € R|Vy < a(I,(8) = B)})
Below we write I(«, 3) for 1,(8)

18.4.2 Inductive Definition of functions x, : M — M for a < M (Rathjen, 1990)

1) (0.0} < B0)
2) Y =NF YL+ Ve A € B, B) = v € B a, B)
3)v=xn@) A€ € B, B)An<aNnE <M=~y B (a,p)
4) v =~r ¢(6,1) N 6,0 € B*(,) = v € B"" (e, B)
5y <mAmE B (o, B) = v € B"(a,B)
6) B(a, 8) = Un<wB"(a, B)
7) Xo = Enum(clp ({k|x ¢ B(a, k) A € B(a, K)}))
Note: as was said x and 7 are reserved for uncountable regular cardinals less than M.
Below we write x(«,) for xo(f5)

18.4.3 Properties of xy-functions

1) x(a, f) < M
2) B>720=x(a,B) > x(7)
a>720= x(a,B) = x(v, x(, B))
(o, B) = I(e, B) for all @ < A where A\ = sup{y(n)|n < w} with v(0) =0 and v(n + 1) = x(v(n),0)
Definition: o =nr X(8,7) & o= x(8,7) Ny <a

Let II be the set of uncountable regular cardinals of the form x(«,0) or x(a, 8+ 1)
II={x(e,0)]a < eprr1} U{x(a, B+ 1) < epp1 A B < M}

88

18.4.4 Inductive Definition of functions ¢, : M — 7 for = € II

1) C%e, B) ={0,M}UB

2) C"H(a,) = {7 +6,x(7,0), ™, (), 6,m, 5 € C™ (e, B) A < e A ks € TT}
) () = Un<wC’"(a,IB)

4) Y (a) = min{f < 7|C(a, B) N7 C B}

18.4.5 Properties of y-functions

1) ¢X(0,0)(0) =1

2) a>f20=Y(B) < Yrla) <7
3) Yr(a) € P

We write 1(cv) for 9,0y ()

Definition: o =nF ¥ (8) & a = 9(8) A B € C(B,¢¥=(B))

18.4.6 Inductive definition of T

HoerT

Q)a=yrartas+--+a, Nag,ag,...,a, €ET=a €T

3 a=nrX(BY)ANBYET =T

Ha=Nr:(B)AT,BET=a€eT

5 a=np MPYAB,YyET =acT

For better understanding of collapsing functions ¢, we define for each ordinal o € T its cofinality cof(a) and sequence
(a[n])n<cof(a) such that a = sup{a[n||n < cof(a)}

18.4.7 Definition of fundamental sequences for non-zero ordinals a € T

Da=ar+as+-Fa, Aoy > as >+ > a, = cof(a) = cof(an) Aan] = a1 + as + -+ + (an[n])
2) a=0= cof(a) =0

3) a=1y0,0(0)Va=x(8,0)Va=x(B8,7+1)Va=M= cof(a) =aAaln] =n
4) a = y(0,841)(0) = cof(a) = w A afn] = x(0,8) x n
5) a =ty (Y +1) = cof(a) =wAaln] = Pyoe(7) X n

6) o = Py(p+1,0)(0) = cof(a) = w A al0] =0 A aln+1] = x(B, an])
7) @ = t(as1 1) (0) = cof(a) = w A af0] = x(B+ 1,7) + 1 Aaln + 1] = x(3, afn])
8) a = y(g+1,7)(0 + 1) = cof(a) = w A a[0] = Yy (s41,1)(0) + 1A aln+ 1] = x(8, aln])

9) a = y(3,0)(0) AN M > cof(8) > w = cof(a) = cof(8) A afn] = x(B[n],0)
10) & = g1y (0) A M > cof(B) > w = cof(@) = cof(8) A ali] = x(Alal, x(B,) + 1)
11) o = Py (8,4 (0 + 1) A M > cof(B) > w = cof(a) = cof(B) A a[n] = x(B[n], Vx5, (9) +1)

12) o = 9y (8,0)(0) A cof(B) = M = cof(a) = w A af0] =1 A aln + 1] = x(B[an]],0)
13) a = Yy (8,4+1)(0) Acof(B) = M = cof(a) = w A al0] = x(8,7) + 1 Aa[n+ 1] = x(B[a[n]],0)
14) a = Py (3,4 (0 + 1) Acof(B) = M = cof(a) = w A a[0] = Py (5,4)(0) + 1 Aa[n+ 1] = x(B[aln]],0)

15) o= MP x y Ay < M Acof(y) > w = cof(a) = cof(y) A afn] = MP x (y[n])
16) a = ML x (v + 1) Ay < M = cof(a) = M Aafn] = MPHL x v+ MP x n
17) a = MP x (y +1) Ay < M A cof(B) > w = cof(a) = cof(B) A afn] = MP x v + MBI

18) a = x(B,7) A cof(y) > w = cof(a) = cof(y) A afn] = x(B,v[n])
19) a = . (B) A > cof(B) > w = cof(a) = cof(5) A aln] = Y- (8n])
20) & = s (8) A cOf(B) = o > 7 = cofi(@) = w A aln] = s (Bly[A]]) where 4[0] = 1 and [k + 1] = %, (B11[K])

Limit of this notation is A
21) a = A = cof(a) = w A afn] = x(B[n],0) where 5[0] = 0 and B[k + 1] = MPI]

89

Note the similitude with the fundamental sequences of the functions collapsing a-weakly inaccessible cardinals previously seen.

Examples applied rules
1. D(A)[3] = Y(x(M™M,0)) 19, 21
2. | (MM, 0)[3] = P (Wy (arn,0) Uy arar,0) (y(arr 0 (1)) 3, 20
3. DWyan 0(0)[8] = BT) 3,12, 17, 19
4. Y(x(M,0))[3] = Wy a1,0) Wy (a1,0) Wy 11,00 (1)) 3,20
5. Y (Yy(a1,0)(0))[3] = ¥(x(x(x(1,0),0),0)) 3,12, 19
6. V(¥ (1,0)(0))[3] = ¥ (x(0, x(0, x(0,0)))) 6, 19
7. Y(x (0, x(0, 0)))[3] = P(x(0, % (x(0,9(x(0,1)))))) 3, 18, 20
8 Y(x(0,%(1) +4(1)))[3] = ¥ (x(0,%(1) + 3)) 1,5, 18,19
9. Y(x(0,1))[3] = (0.1 (@x(0.1) (¥x(0.1)(1)))) 3, 20
10. Y (¥x(0,1)(0))[3] = P (x(0) + x(0,0) + x(0,0)) 4,19
11. Y(x(0,0))[3] = P (¥(¥(1)))) 3, 20

These fundamental sequences can be reformulated like this :

3) ¥y(0,0)(0) =1

4) Yy0,6+41)(0) = x(0, 8) - w
5) Uy, (Y + 1) = Vy0,8(7) - w
6) ¥y (5+1,0)(0) = [x(5,)]“(0)

[X(B,9)]“(x(B+1,7) +1)
[X(57 .)]w(wx(ﬁ—i-l,'y) (5) +

= Lim,[x(f(e),0)] if w, > w
10) wX(Lim“fﬁH)() = Lim,[x(f(e), chi(Lim, f,v) +1))] if M > w, > w
11) 7/})((Limuf,'y)((S + 1) leu[(() wx (Limy f,y) (5) 1)}

12) flpx(“meO () [(()70]0.:(1)
13) 1px(lzme v+1) () ((')7O]w((Lzme,) 1)
14) wx(llme,v (6 + 1) = [(f(')’ O] wx(Lzme,"/) (6) + 1)

18) x(8, Limy, f) = Lim,[x(B, f(#))] if w, > w
19) Y- (Lim, f) = Lim, (Y o f) if 71 > wy,
20) Yr(Limy,f) = lim[tpx (f (Yw, 0 f)*(D)))] if w, > 7

7) Yy(8+1,4+1)(0) =
8) 7vZ’><(/3+1,’v) (6+1) = 1)

9) Yy(Lim,. £,0)(0)

References :

1. Buchholz, W.; Wainer, S.S (1987). ”Provably Computable Functions and the Fast Growing Hierarchy”.
Combinatorics, edited by S. Simpson, Contemporary Mathematics, Vol. 65, AMS, 179-198.

2. W.Buchholz (1986). A New System of Proof-Theoretic Ordinal Functions. Annals of Pure and Applied Logic, Vol.
195-207

3. M.Jager (1984). p-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik
Grundlagenforsch, Vol. 24, 49-62

4. M. Rathjen (1990). Ordinal Notations Based on a Weakly Mahlo Cardinal. Arch. Math. Logic, Vol. 29, 249-263

5. http://cantorsattic.info/index.php?title=User_blog:Denis_Maksudov/Ordinal functions_collapsing_the_least_weakly_Mahlo_cardin:
;—a_system_of_fundamental_sequences&redirect=no

Logic and

32,

18.5 Maksudov’s functions collapsing the least weakly Mahlo cardinal

This notation allows to obtain much simpler system of fundamental sequences.

90

18.5.1 Basic notions

Small Greek letters denote ordinals. Each ordinal « is identified with the set of its predecessors o = {8|8 < a}.

w is the first transfinite ordinal and the set of all natural numbers.

P={a>0V8,y < a(f+v < «a)} is the set of additive principal numbers.

Normal form. a =yp a1+ +a, a=a1+ - +a, Aa>a; > - >a, Nay,...,a, €EP

Cofinality of an ordinal « is the least length of increasing sequence such that the limit of this sequence is the ordinal «.
cof(a) denotes the cofinality of an ordinal a.

R = {a > w|cof(a) = a} is the set of uncountable regular cardinals.

M is the least weakly Mahlo cardinal.

Normal form. o =yp MPy & a= MPyAy < M

enm+1 = min{a > M|a = w®} is the least epsilon number greater than M.

In this notation « € R < a = x(8) V. a = M. The variable 7 is reserved for uncountable regular cardinals less than M.

18.5.2 Definition of the function x :ep41 — M

1) Bo(a, B) = pU{0}

2) Yy =NF YL+ Ve AV Y € Bala, B) = v € Buga(a, B)
3) v —OJM+6/\5€B(,B) = v € Bpt1(a, B)

4) v =x(n) An € Bu(a,) Na = v € Byia(a, B)
5)7<7T/\7TGB (CY,,B):>’Y€B”+1(OK,6)

6) ()_Un<w n(o‘wB)

7) x(a) min{8 < M|B(a,B)NM C BN € R}

Normal form. o =np x(8) © a = x(8) A B € B(5,x(B))

18.5.3 Definition of functions ¢, : M — 7

1) Co(a, B) = pU{0}

2) y=NFYL A+ F AT, Tk € O, B) = v € Crya(a, B)
)y =wMTAS € Cn(a, B) = v € Cnya(a, B)

)y =nrF xX(n) An€ Cp(a 5):>7€Cn+1(0l5)

)y = z/Jﬁ()/\n<a/\7r,neCn(a,B)é’yeCnH(a,B)

) () - Un<wcn(avﬂ)

7) ¥r(a) = min{B8 < 7|C(a, B) N7 C B}

Below #(«) is an abbreviation for wX(O)(oz)

Normal form. a =yr ¥x(8) < a = ¢(B) A B € C(B,9(B))

3
4
)
6

18.5.4 Definition of the set T of ordinals which can be generated from the ordinals 0 and M using addition,
multiplication, exponentiation and the functions y, ¥

1)
2)Oé:NFOé1+"'+Oén/\Ozl,...,OLnETéOtET
3)a=NFM5'y/\ﬁ,'y€T:>a€T
4)Oé:NF’(/Jﬂ—(ﬂ)/\7T,6€T:>Oz€T
S)a=nrpx(B)ABET=aeT

18.5.5 A system of fundamental sequences

For each non-zero ordinal o« € T' we define its cofinality cof(«) and assign a fundamental sequence i.e. a strictly increasing
sequence (a[n)])y<cof(a) With length cof(a) and with limit o
a=a;+- 4 a, = cof(a) = cof(an) Aafn] = a1 + - + (an[n])

a = Py p+1)(0) = cof(a) =w A aln] = x(B) xn

2)
3) a=1y(5)(0) Aw < cof(B) < M = cof(a) = cof(3) A aln] = x(B[n])
4) a =1y ()(0) Acof(B) = M = cof(a) = w A al0] =1 Aan+ 1] = x(Blaln]])
5) a=vyp(y+ 1A B=0VE=0+1Vw<cof(8) < M) = cof(a) = w A afn] = ys)(v) xn
6) a =Yy (v + 1) Acof(B) = M = cof(a) = w A al0] = ¥y @s) (7) + 1A aln+ 1] = x(Blaln])
7) a =1y (0) =1Va=x(B)Va=M= cof(a) =aAan] =1
)

8) a = MP x v Acof(y) > w = cof(a) = cof(y) A afn] = MP x (v[n)])

91

9) a = MPTl x (y+ 1) = cof(a) = M Aafn] = MPHL x v+ MP x n
10) o = M? x (7 +1) Acof(B) > w = cof(a) = cof(8) A aln] = MP x v+ MPWI
11) a = ¢ (8) A7 > cof(B) > w = cof(a) = cof(B) A a[n] = ¥ (B[n])
12) a = ¢ (B) A cof(B) = p > m = cof(a) = w A a[n] = - (B[y[n]]) where v[0] =1 and [k + 1] =, (B[y[K]])
Let A denote the limit of this notation
13) @ = A = cof(a) = w A a[n] = ¥ (x(B[n])) where B[0] = 0 and B[k + 1] = MPF
Examples applied rules

T B = o)) 03

2 [SOOI B = 00y by (0] | 7, 12

3. U (0)[3] = (M) 4,7,10,.11

4. P(hxr2)(0))[3] = DM X x(M x x(M)))) 4,9,11

5. | Y(Wxuaan(0)B] = p(x(M + x(M + x(M +1)))) | 4,9, 11

6. P(X(M))[3] = Py (ar) (U an) (xar) (1)) 7,12

v () (0) 8] = »(x(x(x(1)))) 4,7, 11

8. P (x(x(0)) (0)[3] = (X (P (x (¥ (x(1)))))) 3,7,12

9 Py w)+v) (0) 8] = L(x(¥ (1) + 3)) L, 3,5 11

10. P(x(1))[3] = Py) (y@) W1y (1)) 7,12

11. (1) (0)B] = $(x(0) + x(0) + x(0)) 2,11

12. P(x(0)B] = L@ ((¥(1)))) 7,12

These fundamental sequences can be reformulated like this :

) 11[})((0 () 1
2) Yy(p+1)(0) = x(B) - w
3) Yx(Lim, r)(0) = Lzm#(x of)ifw, <M
4) wx(lzme (O))w(l)
6) Yxqtimu) (Y + 1) (x ° F)*(Wx(Lim,.p)(7) +1)
5) Yy(p) (Y + 1) = Uyp)(7) - w
11) Y= (Lim, f) = Lim, (Y o f) if 7 > w,,
12) 1/)W(Lim#f) = lim[%(f((%# © f).(l)))] if Wy =T

Reference :

http://cantorsattic.info/index.php?title=User_blog:Denis_Maksudov/Ordinal _functions_collapsing_the_least_weakly Mahlo_cardinal

;_a_system_of_fundamental_sequences&redirect=no

18.6 Functions collapsing weakly Mahlo cardinals

18.6.1 Definition

An ordinal is weakly Mahlo if it’s an uncountable regular cardinal, and regular cardinals in it (in another word, less than it)

are stationary.
Let My =0, My4+1 be the next weakly Mahlo cardinal after

M,, and M, = sup{Mjp|8 < a} for limit ordinal . Then,

Co(a, B) = pU{0}
Cri1(a, B) = {v+3ly,0 € Cule, B)}
U {M,|y € Cu(a, B)}
U {x=()|m,v € Cphla,) Ny < aAw is weakly Mahlo}
U A{¢=(y)|m, v € Crla, B) Ay < a A is uncountable regular}
C(O&,ﬁ) = U Cn(a
n<w
Xr(a) = min{f < 7|C(a,) N7 C B A S is uncountable regular}
Ur(a) = min{B <n|C(a, B) N7 C B}

In this section the variables p, 7 are reserved for uncountable regular cardinals of the form x.(3) or M.

92

18.6.2 Standard form for ordinals a < min{{|M; = £}

The standard form for 0 is 0

If o is a weakly Mahlo cardinal, then the standard form for o is @« = Mg where § < o and 3 is expressed in standard form
If « is an uncountable regular cardinal of the form y,(8), then the standard form for « is @ = x,(8) where 7 is a weakly
Mahlo cardinal and w, 8 are expressed in standard form

If « is not additively principal and « > 0, then the standard form for a is & = a3 + as + - - - + «,,, where the «; are principal
ordinals with a; > ag > -+ - > @, and the a; are expressed in standard form

If a is an additively principal ordinal but not of the form Mg or x,(7), then « is expressible in the form . (d). Then the
standard form for « is @ = 1 (d) where 7 is an uncountable regular cardinal and 7, are expressed in standard form

18.6.3 Fundamental sequences for the functions collapsing weakly Mahlo cardinals

The fundamental sequence for an ordinal number a with cofinality cof(c) = 8 is a strictly increasing sequence (a[n]),<s with
length 8 and with limit «, where a[n] is the n-th element of this sequence.

Let L = {a|cof(a) > w} denotes the set of all limit ordinals.

For non-zero ordinals o < min{{|M, = £} written in the standard form fundamental sequences are defined as follows:

Ifa=a3+as+ -+ a, with n > 2 then cof(a) = cof(ay,) and af[n] = a1 + az + -+ + (an[n))
If & = 4 (0) then cof(a) = o =1 and «[0] =0

If a =, (g (7+1) then cof(a) = w and afn] = { i;f?;)(z)lfgi;y;g

If a = 9pr, (v + 1) then cof(a) = w and a[n] = xa, (7) -1

If & = 7 then cof(a) = 7 and afn] =7

If a = Mg and B € L then cof(a) = cof(B) and a[n] = Mgy,

If o = ¢ (f) and w < cof(5) < 7 then cof(a) = cof(B) and «a[n] = ¥ (B[n])
If @ = 9 (B) where cof(8) = p > 7 then cof(a) = w and afn] = ¥, (

with (0] = 1 and y[n + 1] = { fjﬁgmﬁﬂ if Z _ XMAZEI “

Limit of this notation is v. If & = v then cof(a) = w and a[0] = 1 and a[n + 1] = My,

O NSO W

These fundamental sequences can be reformulated giving the following recursive definitions :

1. Standard definition of addition of limit ordinals

2. /(/)ﬂ() =1

3a. Yy (Y +1) =xz(7) wif y < B

3b. wxw(ﬂ)w +1) = wXW(B)(W) wify>p

4oy, (v + 1) =P, (7) - w

6. Mleﬂ le#(f — Mf(g))

7. Yr(Lim,f) = Lim,(Yr o f) ifw, <

8a. Y (Lim, f) = lim(§ = ¥ (f((Yu, © HE)))) if wy > and wy, = Xy, (€)
8b. Y (Lim, f) = lim(§ = ¥r(f((Xw, © HE)))) if wp 2 7 and wy = Msq

18.6.4 Another system of fundamental sequences

For the function, collapsing weakly Mahlo cardinals to countable ordinals, the fundamental sequences also can be defined as
follows:

Co=1{0,1}

C’Vl-‘rl = {a+ﬁ)M’Y’X5(6)7w((n)|a767ry75a67<an €CLNoE W/\C € R}

L(a) = min{n < w|a € Cy}

aln] = max{8 < ol L(8) < L(a) +n}

where R denotes set of all uncountable regular cardinals and W denotes set of all weakly Mahlos cardinals.

18.6.5 References

http://googology.wikia.com /wiki/List_of_systems_of_fundamental _sequences
https://sites.google.com/site/travelingtotheinfinity /the-function-collapsing-weakly-mahlo-cardinals

93

18.7 Collapsing cardinals greater than Mahlo

After Mahlo cardinals, things become more and more complicated.

Jan-Carl Stegert wrote a dissertation on this subject (”Ordinal proof theory of Kripke-Platek set theory augmented by strong
reflection principles”) available here :

https://miami.uni-muenster.de/Record /429ac0b8-092{-426d-bf84-1e3a0adc8957

which is often considered as the state of the art in the domain of ordinal notations.

To get an idea of the complexity reached at this level, let us read what David Madore says in

http://www.madore.org/ david/weblog/d.2017-08-31.2462.ordinaux-interessants.html :

(translated from French by Google and me)

”But beyond that, there are far more important complications: to crush a ”II4-reflective” ordinal, one must begin to manage
ordinals whose description is really more complex than the collapsing of something (for example Ordinal IIs-reflecting on Il3-
reflecting): the collapsing functions take as argument not just an ordinal to which to collapse and a simple level of Mahloness,
but much richer data which are ”configurations of reflection” or ”instances of reflection” (one does not just collapse to an
ordinal of Mahloness level ¢ and less than 7 but to an ordinal having some properties of reflection which lead themselves to
other collapsing functions), and the notation system becomes incredibly more subtle and defined by a pretty awesome number
of nested recursions. At least the "II5-reflecting” ordinals or more do not bring more substantial complexity compared to
II4-reflecting, but there are still some subtleties if we want to include all levels at once, or even levels indexed by the system of
ordinals we are defining. This is basically the point at which Jan-Carl Stegert’s thesis (Ordinal proof theory of Kripke-Platek
set theory augmented by strong reflection principles (2010), available here in PDF), introduces ordinal notational systems.
whose only definition extends over a large number of pages (especially pp. 13-30 for the main system, pp. 68-70 for a simplified
version, pp. 66-67 for an even more simplified version equivalent to collapsing of a Mahlo cardinal / IIz-reflecting ordinal, and
pp. 100-113 for an even richer system). From what I know, it is the largest explicit system of ordinal notation that has been
introduced and rigorously analyzed in mathematical literature.”

19 Taranovsky’s conjectured ordinal notations

Dmytro Taranovsky presents, in a self-published web page (http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm),
several conjectured ordinal notations, which means that it is not proved that expressions in these notations really represents
ordinals, because it is not proved that these notations are well-founded, which means that every set has a least element, which
is a fundamental property of ordinals. The well-foundedness of a notation system is equivalent to the existence of an order-
preserving injective map from this system to ordinal, which means that every expression in the notation is associated with a
unique ordinal, and an ordinal which can be represented in this notation has a unique standard form in it. Well-foundedness
is proved only for one of the notations called ” Built-from-below with Passthrough”, described in chapter 8 of the web page.
These notations are much simpler than ordinal collapsing functions that collapse big cardinals, they collapse only cardinals
less than Q, or N, but Taranovsky conjectures they are strong enough to provide an ordinal analysis of full second-order
arithmetic, which means much more powerful than Stegert’s system.

There are reasons to suspect him of overestimating the power of his notation : the simplicity of the notation compared to its
allegated power and the complexity of concurrent less powerful notations, the fact that Taranovsky published his work on a
personal page and not in a recognized journal and he did not present a thesis of mathematics...

More technically, Madore thinks that ” Taranovsky missed the fact (which is what makes ordinal analysis very delicate beyond
II3-reflection) that to deal with IIs-reflection we need to account for those ordinals which are Ilp-reflecting on a set of IIs-
reflecting ordinals, which means we need to go beyond collapsing functions and talk of collapsing hierarchies”.

(https://johncarlosbaez.wordpress.com/2016,/07/07 /large-countable-ordinals-part-3/)

But a look at his work shows that it seems to make sense. So is he a pretentious or a genius who should be more recognized?
Personally I am not competent enough to judge it. Some opinions about it can be found here :
https://mathoverflow.net/questions/118854/does-taranovskys-system-of-ordinal-notations-make-sense /118888
https://johncarlosbaez.wordpress.com/2016/07/07/large-countable-ordinals-part-3/

http://www.madore.org/ david/weblog/d.2017-08-31.2462.ordinaux-interessants.html

19.1 Definition of Taranovsky’s Ordinal Notation

In http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm , Dmytro Taranovsky defines in fact several ordinal notation
systems which belong to a same framework. Here, we will study principally what he calls "Main Ordinal Notation System”
described in chapter 5 of his article. At the end of this chaper, we will have a short look at his other notations.
This main system is in fact an indexed sequence of systems : the Oth system, the 1st system, the 2nd system, ...

94

In any n-th system, a syntactically correct representation of an ordinal is either 0, or €, or C(a,b) where a and b are
representations of ordinals. Example : C(C(0,0),C(£2,0)). Taranovsky writes ”,,” instead of 7Q”, but it seems simpler to me
to write it 7€”. 0 represents the ordinal 0, 2 represents €2,,. C(«,) is more difficult to define, for the moment I will only say
that it represents 8 + w® if C(a, 8) > a.

A representation of an ordinal may also be written in postfix form, for example 0QC0O0CC. This form can be defined by a
generative grammar :

e Ord —» 0
e Ord — Q
e Ord — Ord Ord C

Then we can define an order relation on syntactically correct expressions by lexicographical order with C < 0 < Q. For
example, C(C(0,0),0) < C(£2, 0) because lexicographically 000CC < 0Q2C. At this point, we get an ordered set of expressions
which might be interesting, but does not describe ordinals because it is not well ordered (some sets do not have a least element).
To describe ordinals, we must introduce some restrictions defining standard forms, lexicographical comparison of postfix forms
being valid only for ordinals in standard forms. The first restriction introduced by Taranovsky is that C(a, C(8,7)) is standard
only if @ < 8. The second one is that C(a,) is standard only if « is n-built from below from C(a, §). We will see later what
means ”n-built from below”.

The complete definition of a standard form is :

e 0 and are standard
e C(a,p) is standard if and only if :

— « and B are standard
— Bis0or Qor C(v,d) with a <
— «a is n-built from below from C(«, 3)

Now what does "n-built from below” mean ? Taranovsky defines it as follows :

e An ordinal « is 0-built from below from 3 iff a < S.
e « is n+1-built from below from S iff the standard representation of o does not use ordinals above « except in the scope of
an ordinal n-built from below from S.

(Note: ”in the scope of” means ”as a subterm of”.)

Nayuta Ito gives in https://googology.wikia.org/wiki/User_blog:Nayuta_Tto/Introduction_to_Taranovsky’s_Ordinal Notation
an equivalent but more explicit definition :

1. «a is 0-BFB from g if and only if a < 5.

2. «ais (k+1)-BFB from S if and only if:

2a. For all subterm ~ of «, either of them follows:

2aa. v < «

2ab. there exists subterm § of o such that «y is subterm of § and ¢ is k-built from below from §.

In the n-th system, Q represents €2,,, and C(£2;11,0) represents €2;, which permits to represent any €2; with i < n.

What is the least ordinal in this notation ? We can answer to this question considering the lexicographical order on postfix
representations, with C' < 0 < . A postfix representation cannot start with C because C must be preceded by two other
postfix representations, so the least postfix representation is 0, which represents the ordinal 0.

Then the correspondence between Taranovsky’s notation and ordinals goes on :

e The next postfix representation starts with 0, it cannot be 0C for the same reason, it can start with 00, and must be
completed with C for syntactical validity, so it is 00C or C(0,0) which represents the ordinal 1.

e Similarily, after comes 00C0C = C(0,C(0,0)) which represents 2, and so on.

e More generally, C(0, @) represents the successor of a, &+ 1 (for more language simplicity we will sometimes identify ordinals
with their representations).

e After all natural numbers comes 000CC = C(C(0,0),0) which represents w.

95

e More generally, C(C(0, «), 8) represents sup{3,C(«a, 8),C(a,C(et, B)),...}.

e For example, w -2 = sup{w,w + L,w + 2,...} = sup{C(C(0,0),0),C(0,C(C(0,0),0)),C(0,C(0,C(C(0,0),0))),...} =
C(C(0,0),C(C(0,0),0)).

e Then, w? = sup{0,w,w - 2,...} = sup{0,C(C(0,0),0),C(C(0,0),C(C(0,0),0)),...} = C(C(0,C(0,0)),0).
After all the w™ comes w® = sup{w’ = 1,w! = w,w?,...} = sup{C(0,0),C(C(0,0),0),C(C(0,C(0,0)),0),...} = C(C(C(0,0),0),

Then comes g9 = sup{0,w’ = 1,w! = w,w*,...} = sup{0,C(0,0),C(C(0,0),0),C(C(C(0,0),0),0),.... This is the least fixed
point of £ — C(&,0). To represent it in Taranovsky’s notation, we use ; as a fixed point operator : g9 = C(21,0). In the
first system, we have Q = ;. In the second system, Q = Q9 and Q; = C(Q2,0) = C(Q,0).

After g9 comes successively :

e 50+ 1=C(0,C(£24,0))

e 50+2=C(0,C(0,C(Q1,0)))

o 5o +w=C(C(0,0),C(,0))

o co+w-2=C(C(0,0),C(C(0,0),C(2,0)))
o o +w? = C(C(0,C(0,0)),C(,0))

o o+ w¥ = C(C(C(0,0),0),C(2,0))

e cot+eg=c¢p-2=C(C(2,0),C(24,0))

e 50-3=C(C(01,0),C(C(Q4,0),C(24,0)))
e 50w =C(C(0,C(Q1,0)),C(Q1,0))

e 502 =C(C(C(2,0),0(Q4,0)),C(2,0))

e 50¥ = C(C(C(0,C(921,0)),C(21,0)),C(£24,0))
e 5% = C(C(C(C(21,0),C(£24,0)),C(£24,0))
e c1 =C(21,C(Q4,0))

o 20 =(C(021,C(Q,C(Q1,0)))

e £, =C(C(0,9),0)

e c,2 =C(C(0,C(0,91)),0)

o =, = C(C(C(£24,0),01),0)

e (o =C(C(021,21),0)

e ')y =C(C(C(Q1,£21),91),0)

o LVO = C(C(C(C(,01),01),Q1),0)

e BHO = C(C(Q2,21),0)

To make C a total function for a and b in the notation system (this is not required for standard forms), let C(a, b) be the
least ordinal (in the notation system) of degree > a above b, where the degree of ; is ;11 and the degree of C(c,d) is ¢ if
”C(c,d)” is the standard form.

More precisely and more generally, a degree for a well-ordered set S is a binary relation on S such that :

e Every element ¢ € S has degree Og (the least element of S). 0g only has degree Og.

e For a limit a, ¢ has degree a iff it has every degree less than a.

96

e For a successor a’=a+1, either of the following holds:

— An element has degree a’ iff it is a limit of elements of degree a.

— There is a limit element d < a such that for every ¢ in S, ¢ has degree a’ iff it has degree a and either c < d or cis a
limit of elements of degree a (or both).

Note: The third condition can be equivalently written as Ya(Cyi1 = lim(Cy) V 3d € lim(S) N (a + 1)Coq1 = lim(Cy) U (Coy N
(d+1))), where S is identified with an ordinal (so a+1 consists of ordinals < a), C, is the set of elements that have degree a,
and lim is limit points.

In other terms : Let n be an ordinal, and let Og and let Ld(a,b) be the statement that a is a limit of ordinals ¢ such that
(¢,b) € D. Let D be the following binary relation over 7 :

e Va<n:(a,0) €D
e Va<n:a#0= (0,a) ¢ D

Vb e LimUn: (a,b) € D<= Ve<b: (a,¢) €D

Vb : (a,b) € D < Ld(a,b+ 1)Vb: (a,b) € D & Ld(a,b+ 1)
e Vb:3de LimUn:d<=b=Ve:(c,a+1) € D< (c<=dV Ld(e,b))

Then C(a,b) =min{c:cenAc>bA(ca) € D}.
C(a,b) = b+ w* iff C(a,d) > a.

For ordinals of cofinality w, the fundamental sequences of Taranovsky’s notation can easily be defined: for example :
Let L(a) be the amount of C’s in standard representation of «.
Then :

afn] = maz{Bl < a A L(8) < L(a) +n}

or

a[n] = max{B|B < a A L(B) < n}
Examples with this last definition :
a = C(C(0,0),0) = w

al0] =0

e a[0] =0

e a[l] = C(0,0)

e a[2] = C(C(0,0),0)

e a[3] = C(0,C(C(0,0),0))

e a[4] = C(0,C(0,C(C(0,0),0)))

e a0l =0oral0] =0

e a[l] = C(0,0)

e a[2] = C(C(0,0),0) a[l] = C(C(0,0),0)

e a[3] = C(0,C(C(0,0),0))

e a[4] = C(C(0,0),C(C(0,0),0)) a[2] = C(C(0,0),C(C(0,0),0))

97

Normally, 1 has no fundamental sequence indexed by integers since it is not countable, but if we use this formula with Q,
we get a fundamental sequence of the limit ordinal of the notation. For example, for system number 1, the limit ordinal is the
Bachmann-Howard ordinal, and with a = 7 we get the following fundamental sequence of the Bachmann-Howard ordinal :

e a[0] =0

e a[l] = C(94,0)

(] a[2] = 0(0(91,91)70)

e a[3] = C(C(C(Q21,1),),0)

e afd] = C(C(C(C(Q1,91),Q1),1),0)

Here is a Haskell program implementing these definitions :

module Main where
import Data.Typeable

-- Definition of ordinals in Taranovsky Ordinal Notation
data Ton = 0 | W | C Ton Ton
deriving (Eq, Show)

-- Item of postfix representation
data PostfixItem = CP | OP | WP
deriving (Eq, Show, Ord)

-- Convert to postscript representation

postfix 0 = [OP]

postfix W = [WP]

postfix (C a b) = postfix b ++ postfix a ++ [CP]

-- short representation of postfix form
string_postfix [] = ""

string_postfix (CP:1) = "C" ++ string postfix 1
string_postfix (OP:1) = "0" ++ string_postfix 1
string_postfix (WP:1) = "W" ++ string_postfix 1

-- Compare ordinals by comparing postfix representations
instance Ord Ton where
compare a b = compare (postfix a) (postfix b)

—-- List of subterms of an ordinal

subterms 0 = [0]

subterms W = [W]

subterms (C ab) = [C a b] ++ subterms a ++ subterms b

-— nbfbf n a b : a is n-built from below from b

nbfbf 0 a b =a<=b -- a is 0-BFB from b if and only if a<b
nbfbf nl a b = let n = nl-1 in -- a is (n+1)-BFB from b if and only if:
flip all (subterms a) (\c -> -- for all subterm c of a,
c <=a |l -- either c <= a
flip any (subterms a) (\d -> -— or there exists subterms d of a such that
elem ¢ (subterms d) && nbfbf n d b)) -- c is a subterm of d and d is n-BFB from b

-- standard n a : a is in standard form in n-th system

standard _ 0 = True -- 0 is standard
standard _ W = True -- W is standard
standard n (C a b) = -- C(a,b) is standard if and only if

98

standard n a && -- a is standard

standard n b && -- b is standard

(case b of --— b is 0 or W or C(c,d) with a <= ¢
0 -> True
W -> True
Ccd->ac<=c) &

nbfbf n a (C a b) -- a is n-BFB from C(a,b)

-- list_ton_1 1 = list of ordinals with 1 C’s in their representation
list_ton_1 0 = [0, W]
list_ton_1 k1 = let k = k1-1 in
concat (flip map [0..k] (\1 ->
concat (flip map (list_ton_1 1) (\c ->
concat (flip map (list_ton_1 (k-1)) (\d —->
[Ccdl)d N

-- fs n a k = k-th element of fundamental sequence of a in n-th system
-— alk] =max { b | L(b) = k, b is standard and b < a }
fs n a k = foldr (\x -> \y -> if (x <= y) then y else x) 0
(flip filter (list_ton_1 k) (\b -> (standard n b) && (b < a)))

printfsl na i j =
if i >
then return True
else do
putStr ("[" ++ (show i) ++ "] " ++ (show (fs n a i)) ++ "\n")
printfsl n a (i+1) j
return True

printfs name n a i j = do

putStr (name ++ " n=" ++ show n ++ "\n" ++ show a ++ "\n")
printfsl n a i j

putStr "\n"

-- ccnvert to O suc lim
ident x = x

data On

= Zero

| Suc On

| Lim On (On -> On)

intofon Zero = 0
intofon (Suc a) = intofon a + 1

onofton :: Int -> Ton -> On

onofton n 0 = Zero

onofton n W = Lim (Suc Zero) ident

onofton n (C 0 b) = Suc (onofton n b)

onofton n (C a b) =

Lim Zero (\k -> onofton n (fs n (C a b) (intofon k)))

-- main = print (fs 1 (C (C 0 0) 0) 3)

main = do

99

printfs "w" (C(coo 013

printfs "w.2" (c(coo (cC(cCoD D015
printfs "w 2" (C(co((co0)D0 16
printfs "w w" (c(Cc oo 0oo0o1s
printfs "e_O" (Cwo) 1686

printfs "e_O" (cC(Cwo 0o 1e6

printfs "e_0.2" 1 (C (CWO0) (CWD)) 16
printfs "z_O" (cCww 0 16

(C((CcwD (Cw0)) 0 16
(CCCww W 0) 16
(Ce € ECww w w0 16
(C(Cw (w00 16

printfs "z_0"
printfs "G_O"
printfs "LVO"
printfs "BHO"

NN, ONFFPLNFEFRPRNRRP PP

printfs "W_O" W16
printfs "W_1" Wi1ile
printfs "W_1" (Cwo 16
printfs "W_2" W16

Here is the output of this program :

Il 0 T T T Hugs 98: Based on the Haskell 98 standard
Il T I I O Y B Copyright (c) 1994-2005

[1-=-11 1l World Wide Web: http://haskell.org/hugs

Il [l Bugs: http://hackage.haskell.org/trac/hugs
I I

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :7 for help
Hugs> :load ton_explore
Main> main

w n=1

c(Cooo

[11 cO0O0

[2 c0 (CO0 0)

[31 c0 (c0o (c0o0))

w.2 n=1

c(o0 (c(co0 O

[11 cO0O

[21Cc(CO0D0D) O

[31 co(C (COo00 O

[4] cO (CO (C (COODO 0)

[B] CO (COo(cOo(C(Co00 O)
w™2 n=1

c((Ccocom)o

[11 coO

[21 c(cOo0DO O

[31 CcO0 (o0 0

[4] c(Cc0O0 (C(CO0O 0

[B] co (C(c0o0) (C(COoODO 0N
[6] c(CO00 (C(COoDO (cC(co0o o)
w w n=1

100

c€ (oo oo

[11 cO0O0

[21 c(CO00O) O

[31 c(co(Co0o0D)O

[41 c(CO(CO(CO®NO

[B] c(co(co(cocomno

[6] c(CoO(COoOC((CCOC(COC(CODODNN OO
e_0 n=1

Cwo

[11 coOoO

[21 c(cOoD O

[81c(c (o0 0O

[4] c(Cc(C (000 DO

[l c(c(c (c(coD0O0DDOTO

[l c(c(c(c(c(CcCopmDBDODOO
e_0 n=2

ccwoo

[11 coO

[21 c(cOoD O

[31c(c (o0 0DO

[4l c(c(Cc (COoODOODOODO

[l c(c(Cc(C(COoDOODDODOO

[l c(c(c (oo ®O
e_0.2 n=1

c((Cwo (Cwo

[11 cwO

[21 cO (CwW O

[831 c(c0o0 (cwO0O

[4] C (C (CO0O) O (CwWwO

[6B] C (C (C (COD 0 0 (cwaO0

[6] C (C(C(C(C00DD0D0D0(CWOD
z_0 n=1

c€ww o

[11cwO

[21 c(CcOowWw DO

[81 c(Cc (w0 W OO

[4al c(C(C (oW 0 WO

[Bl] c(C (C(C(CWD W) 0 Wo

[l c(C(C (C(CC(CODWDWDODWDO
z_0 n=2

c€(Cwo (cwo)o

[11 coO

[21 c(cwD O

[B1c(co(cCcwD)O

[4] c (C(CO0D (CwO)) O

[B] c (C(C(CwD 0 (cw0D))O

[l c(c(c(co(CwWD)D (CWwD) O
G_0 n=1

c€ EC€Cww wo

[11 cwO

101

[21 Cc(CwWW O

[C(C(COowW WO

[4l c(C(CC (CWD W WO

[B] Cc(C(C(C(CWW 0) W WO
[l c(Cc(C(C(CCCOW WO WW
LVO n=1

cCc€CEwwwwao

[11cwo

[21 C(CWW O

[B31 C(C(CWW W O

[4] c(C(C(COWWWDO

[B] Cc(C(C(C(CWD W) W) w0

[B] c(C(C(C(CCWW 0O W W W
BHO n=2

ccw(cwno)o

[1J] cO0O

[21 c(CwWO O

[31 c(coCwD)O

[4] Cc (C(CWDOD (CWOD)) O

[B] c(C(cOo(CWwWD) (cCw0D))O

[6] C (C(C (CWOD) (CWOD) (CWwO0))
W_0 n=0

W

[11 cO0O

[21 c(cCOo0O)O

[31 Cc(C(cOoD 0O

[4] c(Cc(C (000 DO

[l c(c(c (c(coD0ODOO
[6] c(c(c(c (o000
W_1 n=1

W

[11cwo

[21 C(CWW O

[B31 C (C(CWW W O

[4] c(C(C(CWW W WO

[B] Cc(C(C(C(CWW W) W) W OO

[B] Cc(C(C(C(CCWW W) W W W
W_1 n=2

Cwao

[1J cO0O

[21 c(CcwWwD O

[B1c(cCcww 0O

[4l] c(C(C (CWW) W 0 O

[B] Cc(C(C(C(CWW W) W) 0O

[6] Cc(C(C(C(CCWW W W W 0O
W_2 n=2

W

[11cwO

[21 c(CwW O

[C(C(CWW W O

102

[41 c(C(C(CWW W WO
[61 C (C(C(C (CWW W W) W) O
[6] C (C(C(C(C(CWW W W) W) W) 0

Main>

Here is a summary of the system by Taranovsky (see https://cs.nyu.edu/pipermail /fom/2012-March/016349.html) :

I discovered a conjectured ordinal notation system that I conjecture
reaches full second order arithmetic. I implemented the system in a
python module/program:
http://web.mit.edu/dmytro/www/other/OrdinalArithmetic.py

along with ordinal arithmetic operations (addition, multiplication,
exponentiation, etc.) and other functions. The ordinal arithmetic
functionality is useful even if you are only interested in ordinals
below epsilon_0.

The notation system is simple enough to be defined in full here.

Definition: An ordinal a is O-built from below from b iff a<=b

a is n+1-built from below from b iff the standard representation of a
does not use ordinals above a except in the scope of an ordinal n-built
from below from b.

(Note: "in the scope of" means "as a subterm of".)

The nth (n is a positive integer) ordinal notation system is defined as
follows.

Syntax: Two constants (0, W_n) and a binary function C.

Comparison: For ordinals in the standard representation written in the

postfix form, the comparison is done in the lexicographical order where
’C” < ’0’ < ’W_n’: For example, C(C(0,0),0) < C(W_n, 0) because 0 0 0 C
C<0W.nmnC.

Standard Form:

0, W_n are standard

"C(a, b)" is standard iff

1. "a" and "b" are standard,

2. bis 0 or W_n or "C(c, d)" with a<=c, and
3. a in n-built from below from b.

I conjecture that the strength of the nth ordinal notation system is
between Pi~1_{n-1}-CA and Pi~1_n-CA_O, and thus the sum of the order
types of these ordinal notation systems is the proof-theoretical ordinal
of second order arithmetic.

The full notation system is obtained by combining these notation systems

as follows:

Constants O and W_i (for every positive integer i), and a binary function C.
W_i = C(W_{i+1}, 0) and the standard form always uses W_i instead of
C(w_{i+1}, 0).

To check for standard form and compare ordinals use W_i = C(W_{i+1}, 0)

to convert each W to W_n for a single positive integer n (it does not
matter which n) and then use the nth ordinal notation system.

103

To make C a total function for a and b in the notation system (this is
not required for standard forms), let C(a, b) be the least ordinal (in
the notation system) of degree >=a above b, where the degree of W_i is
W_{i+1} and the degree of C(c,d) is c if "C(c,d)" is the standard form.
A polynomial time computation of C(a, b) (that I believe is correct) is
included in the program.

To complete ordinal analysis of second order arithmetic, one would need:
* A canonical assignment of notations to formulas that provably in
second order arithmetic denote an ordinal, and such that for every two
ordinals/formulas, comparison is provable in second order arithmetic.
The idea is that the notation system captures not only provably
recursive ordinals of second order arithmetic but all ordinals that have
a provable canonical definition in second order arithmetic. For
example, W_1 is best assigned to the least admissible ordinal above
omega. A partial assignment is in my paper. (It is because of such
assignment that I believe that the system reaches full second order
arithmetic.)

* Proof that the system is well-founded and that it has the right
strength, etc. (If you do not fully understand the notation system, or
if you think that it is not well-founded, let me know.)

Historical Note: 1In 2005, I discovered the right general form of C,
defined a notation system at the level of alpha-recursively inaccessible
ordinals (FOM postings in August 2005), and had an idea for reaching
second order arithmetic. In January 2006 (or possibly late 2005), I
defined the notation system with W_2 and in 2009 (June 29, 2009 FOM
posting) implemented it is a computer program. This year I defined the
key concept -- n-built from below -- that allowed me to complete the
full notation system.

Details about the ordinal notation system and its initial segments are
in my paper:
http://web.mit.edu/dmytro/www/other/0OrdinalNotation.htm

Sincerely,
Dmytro Taranovsky

Here are some examples of representations of some ordinals :

= C(0,C(0,0))

e w=0+w!=0C(1,0) = C(C(0,0),0)

e w+l=w+w’=C(0,w)=C(0,C(1,0))
e w-2=w+w'=C(l,w) =C(1,C(1,0))
e w=0+w?=C(2,0)

w? =04 w* =C(w,0) =C(C(1,0),0)
e W =0+w =Cw¥,0)=C(C(C(1,0),0),0)

104

e 50 =¢(1,0) = ¢'(0,1) = C(924,0)

e 51 =p(1,1) =¢'(0,2) = C(W,C(W,0)) (note that the correspondence with ¢’ is simpler than with ¢)
e (o=p(2,0)=¢(1,1) = C(C(Q1,21),0) = C(2y - 2,0) with Q; -2 =C(Q1,)

e (1 =¢(2,1)=¢'(1,2) =C(Q1-2,C(Q4 - 2,0))

e 10 =¢(3,0) =¢'(2,1) = C(4 - 3,0) with -3 =C(21,C(1,9Q))

o Tg=(1,0,0) = ¢'(1,0,1) = C(C(- 2,91),0) = C(2,%,0) with Q2 = C(Qy - 2,Q)
o Ty =C(2%,C(072%,0))

e T, =0C(Q7%+1,0)

e Small Veblen ordinal = C(2,“,0)

e Large Veblen ordinal = C(Q,%*,0)

e Bachmann Howard ordinal = C(C(2,4),0)

Properties :
o C(a,8) = B+ w® if C0,) > a

e C0,0) = a4+ 1 = suc(w)

o Cla+1,8)=C(C0,a),8) = [Cla,)]*(8) = H[C(a, #)|8 if C(C(0,a), B) is in standard form

C(l,a) = C(C(0,0),0) =a+w

C(lim f)B = lim[C(f(e), B)]

C(Limy f,0) = [C(f(e),0)]*(0)

o if o < Q,,C(Qp,) =sup{0,C(0,a),C(C(0,),),...}

o if @ >, and 8 < O, C(C(Q, a), B) = supl0, C(C(0,a), B), C(C(C(C(0,a), B),a), B), ...}

o ifar> 0y, 5> 0 andy <y, C(C(C(Q, @), B),7) = sup{0, C(C(C(0, @), B),7), C(C(C(C(C(C(0, @), B),7), @), 8),7), - -}

o if k> 0,C(Limyf,5) =

— Limg[C(f(e), 8)] if card(Limyf) < card(5)
— [C(f(e),3)]“(0) if card(Limyf) > card(B)

These properties give other possible fundamental sequences :
o if & =0 then cof(a) =0
e if a =9, then cof(a) =, and an] =7
if a =C(0,8) =8+ 1 then cof(a) =1 and 0] = 8
if « =C(B+1,7) then cof(a) = w and «[0] = v, alk + 1] = C(B5, alk])
if « =C(B,v) and S is a limit :

— if card(B) = w or card(B) < card(vy),cof(a) = cof (8) and a[n] = C(B[n],7)
— otherwise cof(a) = w and «a[0] =0, a[k + 1] = C(B[alk]],7)

Examples :

o 1=u" = (C(0,0)

105

w = C(C(0,0),0) = [C(0,e)]“(0) = H[C(0,)]0 = suc?(0) = Hsuc 0
w-2=C(C(0,0),C0(C(0,0),0) = [C(C(0,0), 8)]“(0) = [C(0, #)]*(C(C(0,0),0)) = suc”(w) = Hsuc(Hsuc 0)
w? = C(C(0,C(0,0)),0) = [C(C(0,0),)]*(0) = [+ w]“(0) = H(Hsuc)0
w? = C(C(C(0,0),0),0) = C([C(0,0)]*(0),0) = C(w,0)
C(9,0) is the least o such that a = C(a, 0) = w®, whichiseg : C(Q4,0) = C(Limq]e],0) = [C(e,0)]“(0) = sup{0,C(0,0) =
1=w’ C(C(0,0),0) = w = w!,C(C(C(0,0),0),0) = w®,...} = &g
C(Q1,g0) = C(Limy[e],e0) = [C(e,20)]¥(0) = sup{
-0

C(O 60) =¢e9+1

— C(eo+1,80) = g0 +wot =g - w

— Cleg - w,e0) = g0 +wY = go¥

C(Eow,&‘o) = 5060“’

. } =&

More generally, C(£2, 3) is the least « such that & = C(«,). This is the limit of :

0
— C(B+1,8) = B+wi*! = wit!
- O, B) = w

This limit is written Next § in Simmons notation, with Next = Fiz[w®] and Fizf(= f“({).
So we have :

— C(Q,0) = Next 0 = g9

- C(2,C(9,0)) = C(Q,e0) = Neat g9 = &1
- C(,C(Q,C(9,0)) =C(Q,e1) = e

C(+1,0) = [C(, 0)]“(0) = sup{0,C(2,0) = g9, C(Q,C(Q,0)) =¢1,...} =&y
C(Q1-2,0) = C(Lim1[Q + o],0) = [C(2; + ,0)]“(0) = sup{0, C(21,0) = 9, C(Q + £0,0) = €c,---} = (o

Noting that 1 -2 = C(Q1,Q1) and 1 = LimyI where I is the identity function, we can also get the following fundamental
sequence of (j :

C(C(, (), 0) = C(C(Limi1,4),0) = C(Lim1[C(e,Q21)],0) = [C(C (e, 21),0]“(0)
= sup{0,C(C(0,21),0) = eu, C(C(C(C(0,91),0),21),0) = £c_,...} = Co

Case where C(Limy £, 8) # [C(f(#), B)]*(0) : C(1, Q1) = 24 - 2, but [C(e,21)](0) = ea, 11

We saw that C(£2,0) is the least o such that a = C(«,0) = w®, which is .

We saw that if C(C(0, @), 8) is in standard form, then C(C(0,«),) = [C(a, 0)]“(8). But if it is not in standard form, this is
not necessarily the case. Let us consider for example C'(C(0,C(€1,0)),0) with « = C(Q1,0) and 8 = 0. This is not a normal
form. [C(C(£21,0),)]“(0) is the limit of the sequence :

0
C(C(621,0),0) = ¢(1,0) = &0
C(C(£21,0),C(C(21,0),0)) = ¢(1,0) - 2

106

The limit of this sequence is ¢(1,0) - w, but C(C(0,C(£21,0)),0) = ¢(1,0).
If we consider the standard form C(C(0,C(1,0)),C(21,0)) with a = C(£24,0) and g = C(21,0), it is equal to ¢(1,0) - w
which is also equal to [C'(C(€1,0), e)]“(C(£21,0)) which is the limit of the sequence :

C(21,0) = (1, 0)

C(C(24,0),C(21,0)) = ©(1,0) - 2
C(C(24,0),C(C(£24,0),C(21,0))) = ¢(1,0) - 3

Here are the results obtained with Taranovsky’s ordinal arithmetic program :
(http://web.mit.edu/dmytro/www/other/Ordinal Arithmetic.py)

>>> C2(C2(W(1),0),0)

phi(1,0)

>>> C2(C2(W(1),0),C2(C2(W(1),0),0))
phi (1,0) %2

>>> €2(C2(0,C2(W(1),0)),0)

phi(1,0)

>>> €2(€2(0,C2(W(1),0)),C2(W(1),0))
phi(1,0)*w

>>> C2(W(1),0)

phi(1,0)

>>> C2(C2(W(1),0),C2(W(1),0))
phi(1,0)*2

>>> C2(C2(W(1),0),C2(C2(W(1),0),C2(W(1),0)))
phi (1,0)*3

>>>

Here is a Haskell program which converts an ordinal in Taranovsky ordinal notation into an ordinal represented in terms of
zero, successor and limits :

module Main where
ident x = x
comp f g x =1 (g x)

data Ord

= Zero

| Suc Ord

| Lim Integer (Ord -> Ord)

one = Suc Zero
two = Suc one
three = Suc two

show_ord n Zero = "0"
show_ord n (Suc a) = "S " ++ show_ord (n+2) a
show_ord n (Lim k f) = "L" ++ show k ++ " " ++ show_ord (n+3) (f Zero) ++ "\n" ++ replicate (n+3) ’ ’ ++ show_c

instance Show Ord where
show a = show_ord 0 a

—-- Definition of ordinals in Taranovsky Ordinal Notation

data Ton = 0 | W | C Ton Ton
deriving (Eq, Show)

107

ord_of_int 0 = Zero
ord_of_int (n+1) = Suc (ord_of_int n)

-- power of a function : fpower0O a f = f7a

fpower0 Zero f = ident

fpower0 (Suc a) f = comp f (fpowerO a f)

fpower0 (Lim n g) £ = \x -> Lim n (\y -> fpower0 (g y) f x)

level Zero 0
level (Suc a) level a

level (Lim k f) =k

c n Zero a = Suc a
cn (Suc a) b =Lim 0 (\i -> fpower0O i (c n a) b)
cn (Lim k f) b = if level (Lim k f) <= level b
then Lim k (\x -> ¢ n (f x) b)
else Lim 0 (\i -> fpowerO i (\x -> ¢ n (f x) b) Zero)

ord_of_ton n 0 = Zero
ord_of_ton n W = Lim n ident
ord_of_tonn (C ab) = cn (ord_of_ton n a) (ord_of_ton n b)

19.2 as limit

We have previously seen a definition of fundamental sequences which works for countable ordinals :

afn] = maz{B|8 < a A L(B) <n}

and a Haskell function which, given an ordinal, displays the corresponding fundamental sequence.

This formula is valid for countable ordinals. If we apply it to uncountable ordinals like €; (considered here as the least
uncountable ordinal w;), of course, we don’t obtain a fundamental sequence of 7 : this is impossible because €1, which is
uncountable, cannot have a countable fundamental sequence. We have seen that we get a fundamental sequence whose limit
in the limit of the system, which is the least ordinal that cannot be represented in the system.

But we can define another system in which we consider that €2, instead of representing the least uncountable ordinal, represents
the limit A\ of the initial system. This system has a higher limit A’ > X\ because A can be represented in this new system by
Q.

In the system S5, we can then apply the formula to 2 = 5 interpreting the terms of the resulting fundamental sequence in
the new system. Then we can define another system in which we consider that 25 represents the limit of this fundamental
sequence, and so on.

19.2.1 Example : System S,
The limit of system Sy is :

w

o = sup{0,C(0,0) = 1,C(C(0,0),0) = w, C(C(C(0,0),0),0) = w*, C(C(C(C(0,0),0),0),0) = w*",...} =&

In system S)), Q represents 9. The limit of this system is :

Ny = sup{Q = 9, C(Q, Q) = £0:2, C(C(Q,Q),Q) = 0%, C(C(C(Q,9Q),0),Q) =%, C(C(C(C(Q,9Q),0),2,0) =" ,...} =¢

19.2.2 Example : System 5
The limit of system S; is (where Q = ;) :

AL = SUP{C(Q» 0) = €o, C(C(Qv Q)v 0) = Co, C(C(C(Qv Q)? Q)a 0) =T, C(C(C(C(Qv Q)? Q)v Q)’ 0) =LVO,.. } = BHO

108

In system S}, Q represents BHO. The limit of this system is :
N, = sup{Q = BHO,C(Q,Q) = BHO -2,C(C(,Q),Q) = BHO?,C(C(C(Q,Q),Q),Q) = BHOBHO }

19.2.3 Example : System 5o

The limit of system S is :

o = sup{C(C(Q2,0),0) = C(Q,0) = g9, C(C(C(Q2,22),0),0) = |II} — TRo|eon, C(C(C(C(Q, 02), 2s),0),0),....}

In system S5, Q1 = C(£22,0) represents As.

19.2.4 Conversion into ”classical” representation with zero, successor and limit

Here is a Haskell program implementing the conversion from this variant of Taranovsky ordinal notation into ”classical”
representation with zero, successor and limit :

module Main where
import Data.Typeable

-- Definition of ordinals in Taranovsky Ordinal Notation
data Ton = 0 | W | C Ton Ton
deriving (Eq, Show)

-- Item of postfix representation
data PostfixItem = CP | OP | WP
deriving (Eq, Show, Ord)

-- Convert to postscript representation

postfix 0 = [OP]

postfix W = [WP]

postfix (C a b) = postfix b ++ postfix a ++ [CP]

—-- short representation of postfix form
string_postfix [] = ""

string_postfix (CP:1) = "C" ++ string postfix 1
string_postfix (OP:1) = "0" ++ string_postfix 1
string_postfix (WP:1) = "W" ++ string_postfix 1

-- Compare ordinals by comparing postfix representations
instance Ord Ton where
compare a b = compare (postfix a) (postfix b)

—-- List of subterms of an ordinal

subterms 0 = [0]
subterms W = [W]
subterms (C ab) = [Cab] ++ subterms a ++ subterms b

—-— nbfbf n a b : a is n-built from below from b

nbfbf 0 a b =a<=b -- a is 0-BFB from b if and only if a<b
nbfbf nl a b = let n = nl-1 in -- a is (n+1)-BFB from b if and only if:
flip all (subterms a) (\c -> -- for all subterm c of a,
c<=a |l -- either c <= a
flip any (subterms a) (\d -> -- or there exists subterms d of a such that
elem c (subterms d) && nbfbf n d b)) -- c is a subterm of d and d is n-BFB from b

109

-- standard n a : a is in standard form in n-th system

standard _ 0 = True -- 0 is standard

standard _ W = True -- W is standard

standard n (C a b) = -- C(a,b) is standard if and only if

standard n a && -- a is standard

standard n b && -- b is standard

(case b of -— b is 0 or W or C(c,d) with a <= ¢
0 -> True
W -> True
Ccd->ac<=c) &&

nbfbf n a (C a b) -- a is n-BFB from C(a,b)

-- list_ton_1 1 = list of ordinals with 1 C’s in their representation
list_ton_1 0 = [0, W]
list_ton_1 k1 = let k = k1-1 in
concat (flip map [0..k] (\1 ->
concat (flip map (list_ton_1 1) (\c ->
concat (flip map (list_ton_1 (k-1)) (\d ->
[Ccdl) NN

-- fs n a k = k-th element of fundamental sequence of a in n-th system
--— alk] =max { b | L(b) =k, b is standard and b < a }
fs n a k = foldr (\x -> \y -> if (x <= y) then y else x) 0
(flip filter (list_ton_1 k) (\b -> (standard n b) && (b < a)))

data On = Zero | Suc On | Lim (Integer -> On)

on_of_ton n 0 = Zero
on_of_tonn (C 0 a) = Suc (on_of_ton n a)
on_of_tonn a =Lim (\i -> on_of_ton n (fs n a 1))

19.3 The power of the notation

If Taranovsky’s notation is correct, where could its power come from ?

Let us compare Taranovsky’s C with a ”classical” ordinal collapsing function like Buchholz .
For sufficiently small values of «, we have tg(a) = w® and C(a, 8) = 8 + w®, so Yg(a) = C(«, 0), but after Q the results are
different. Here is a comparative table :

a Yo(a) C(a,0)
0 1 1
1 w w
w wv wv
€0 €0 €0
eo+1 €0 €0
Ql &N €0
O +1] ey -w=wFl Ew
Q-2 €1 Co
Q;° Co Iy

We see that C(a,0) grows faster than g (a).
We generally have (o + 1) = ¢o(a) - w, but C(a+ 1,0) = [C(«,)]¥(0), which grows faster.
This can be compared with F function previously seen :

L4 Fn(07b) =b+1
o Fu(a+1,b) = [Fu(a,e)]’()

110

= F,(a[c],b) if a is a function from Q to Q2,41 with k <n
= F,(a[b],b) if a is a function from €, to 2,41

The power of Taranovsky’s notation could also come from the notion of "n-built from below”, and the ”n-shiftedness” of
functions. Concerning this, Boris Dimitrov writed in

https://mathoverflow.net /questions/118854 /does-taranovskys-system-of-ordinal-notations-make-sense /118888 :

[with my comments]

”The reason why ”"n-build from below” is so important is because it’s a crucial part of defining which ordinals are standard and
which are not. The thing which makes Taranovsky’s notation so unique is that it’s not defined simply by recursion. Instead,
it gives you rules that tell you the universal set of all ordinals standard in the notation and all strings valid in it, and from
there you have to use the binary function C as a hierarchy that connects them. In order to answer why it’s so strong, first
we need to ask what makes a notation strong in general. For ordinal notations, one is cosidered strong if it can express really
large ordinals, but for recursive notations, they should be able to express everything below a certain ordinal, especially for
notations like Taranovsky’s. So it’s fare to say that a recursive ordinal notation is strong if it can express ”a lot” of ordinals.
(whatever ”a lot” means for infinities) In the case of Taranovsky’s notation, which can express every ordinal below it’s limit,
how many terms are valid in it depends soley on the requirements for and ordinal to be valid (standard) and for that we need
the ordinal C(a,) to be standard and one of the 3 requirements for that is that 8 has to be n-built from below by C(«,53).

For large ordinals, however n-bult from below starts to behave irregularly, and we get this weird property of ”n-shiftedness”
of functions. Typically, each ordinal that has a standard representation in a particular n+1-system but not in the n-system is
a result of an n-shifted function. We say that a function is n-shifted if it’s supremums are within another ”layer” or nesting
in the function. I know this definition is not formal, but formalizing it is aqtually quite difficult. For example, the least fixed
point of a — C(Qy -2+ C(Q1 + ,0),0) is C(Qy - 2+ C(Q4 - 2,0),0) [obtained by replacing a by €4], so this expression is
not shifted. Meanwhile, the least fixed point of o — C(Qs -2+ C(Q2+ «,0),0) is C(Q2 -2+ C(Q2 + C(Q2-2,0),0),0) [which
is 1-shifted] and the least fixed point of a — C(23 -2+ C(Q3 + @, 0),0) is C(Q3 -2+ C(Q3 + C(Q3 + C(Q3 - 2,0),0),0),0)
[which is 2-shifted]. Generally, we say that a function is 0-shifted if it has no shiftedness properties and that a function is
n+1-shifted if it has a 1-shiftedness property of reflection above n-shifted functions within the same system. The n=1 system
is O-shifted, and that’s why it’s similar to many other Ordinal Collapsing Functions, the n=2 system is 1-shifted and that’s
why it’s stronger than pretty much everything else. Generally any n+1 system of Taranovsky’s C is n-shifted. This may seem
like a small thing, but it totally changes the set of all ordinals standard in that notation, which we mentioned is precisely it’s
strength. Most other notations are 0 shifted, so even if they seem very strong, they likely fall within the range of Taranovsky’s
second system.”

19.4 Analysis of Taranovsky’s Ordinal Notation with ”standard OCFs”
From https://googology.wikia.org/wiki/User_blog:Boboris02/Analysis_of_Taranovsky’s_Ordinal Notation_with_”standard_OCFs.”

The actual definition of the notation is quite complicated,in my opinion. So I will try to break it down and simplify it.

Let’s denote a binary relation of "« is n-built from below by 5”7 and a unary relation of ”standard form” to ordinals.

a is 0-built from below by g if a < 5.

a is (n+1)-built from below by 8 iff the standard representation of 5 does not use ordinals above « unless it’s an ordinal
that is n-built from below by S.

But what is standard representation?

Ordinals 0, 2, for 0 < n < w are axiomatically standard.

Ordinal C(a, f) is in standard form iff:

e Both a and (8 are in standard form.
e [isin the form C(v,d) where o < 7.
e « is n-built from below by C(«, f)

A 7standard representation” of an ordinal is in the form C(c, 8) such that all of the ordinals used are 0 and €2, respectively
for an expression within the n-system.
But what is an n-system?

111

The description of standart form above describes an infinite collection of functions,the concatenation of which is all of Tara-
novsky’s C function.

An ordinal is in the scope of the n-system if it’s representable in the form C(Q%8 + v,).

Every term within an n-system is valid if it has a standard representation within that said system.

With all of this said,let L(«) be equal to the amount of Cs in the standard representation of o and let «[n] denote the nth
term of the fundamental sequence of .

Then a[n] = maz{8|8 < a A L(B) < L(a) + n}.

(I've removed the trinary lexicographic {C, 0,8, } code because I don’t feel like it’s necessary here.)

19.4.1 Comparison of system n=1

C(0,) is simply the successor of a.

C(0,0) =1

C(0,C(0,0)) = 2

C(0,C(0,C(0,0))) =3

C(1,0) =w

C(0,C(1,0)) =w + 1

C(0,C(0,C(1,0))) = w + 2

C(1,C(1,0)) = w2

C(0,C(1,C(1,0))) = w2 + 1
C(1,0(1,C(1,0))) = w3

C(2,0) = w?

C(0,C(2,0)) = w? +1

C(0,C(0,C(2,0))) = w? +2

C(1,0(2,0)) =w? +w

C(2,0(2,0)) = w?2

C(2,0(2,C(2,0))) = w?3

C(3,0) = w?

Generally, Vo, 8 < Q; : C(a, B) = B+ w®.
C(C(1,0),0) = C(w,0) = w
C(C(0,C(1,0)),0) = C(w +1,0) = wet?
C(C(1,0(1,0)),0) = w*?

C(C(2,0),0) = w*”
c(c(C(C(0,0),0),0),0) = C(C(C(1,0),0),0) = C(C(w,0),0) = w"
C(C(C(C(C(0,0),0),0),0),0) = w"
C(Q70) =&

C(C(,0),C(Q,0)) = 02
C(C(9,0),C(C(Q,0),C(Q,0))) = e03
C(C(2,0) +1,C(2,0)) = eow

C(C(,0) + C(1,0),C(Q,0)) = eow®
C(C(C(,0) +1,C(Q,0)),C(2,0)) = £
C(C(C(C(9,0),C(Q,0)),C(Q,0)),C(2,0)) = C(C(C(,0)2,C(2,0)),C(Q,0)) = 5°
C(C(C(C(C(Q,0),C(2,0)), C(9,0)), C(2,0)), C(,0)) = 5"
C(2,0(2,0)) =¢;

C(Q7 C(Qv C(Qa O))) =é&2
CQ+1,0)=¢,

C(Q+2,0) =e,e

C(Q + C(la O)a) = Euww

C(Q+C(2,0),0) = e,

C(Q+ C(Q+ C(9,0),0),0) = &.,
0(9270) = o

Generally,from C(£,0) on,the n=1 system is almost the same as the ¥() function and somewhat to () function.
C(Qw,0) = ¢p(w,0)

C(92%,0) =T

C(Q,0) = »(Q)

112

C(02,0) = $(Q2)
C(09°,0) = p(0"")

So the limit of the n=1 system is the Bacchman-Howard ordinal.

19.4.2 Up to ¥(¢;(0))

C(C(22,9),0) = Y(eq+1)
Cc(Q C(C(QQ,Q), 0)) = ¢¥(eqs1 + 1)
((2),0)) = ¥(ea+1 + Q)
(C(Qz 0),0)) = ¥(ea+12)

,0) = Y(earw)
0) = Y(eq419)

) = ¢p(eq1Q?)Q
20) = P(eqr10%7)

17
Q,9),0) = (=02
Q2,0) + C(C(Q2 C(C(22,9),90),),0) = w(ssn.H)
C(02,9),C(03,0)),0) = C(C(82, 2)2,0) = 6(61(2))
From here on it’s a similar pattern:

C (92,) corresponds to Qs

C(C(22,9),9Q) corresponds to £q,+1

C(Qq, (QQ, Q)) corresponds to 3

C(Q2,C(Qa,C(Q2,9Q))) corresponds to Qy
C(C(Qz +1 0),0) = ¢(§2)
C(C(22+2,0),0) = ¥(Qy2)

C(C(Q2 +©,0),0) = ¥(Q)

C(C(Qq + C(Q2 +9Q,0),0),0) = ()
C(C(€222,0),0) = 2/J(?/Ur()

19.4.3 Up to ¥(v;(I))

Let a = C(022,0) and b = C(Qs,a).
C(a,0) = ¥(41(0))
0) = (ep, (0)+1)
,C(0,0)) = Y(ey; ()41 + 1)
) C(b7 0)) ¢(5w1(0 41+ wf(()))
; (b 0)) Y(eyr(0)+12)
Eyr(0)+1w)
5w1(0)+1¢1()

w(gili] 0)+1)

Ja)),0) = U=,), 2 >

C(b a),0) = ¥(ey,

c(b a),C(b,a)),C(b,a)), > (Ji’é?ji)

QO QQQQQQQ
sii

)_A/—\

(
(
(
(
Sr(0)+1
b+ C(C(C(C(ba).C(b,a), C(b,a)),C(b.a)).0) = e, 11T)
E a) ¢(5w1(0)+2)
(
(

= AN~
m
<
~
—~
o
=
]

113

Cb+Cb+Cb+C(b,a),a),a)0) = w(ss%](o)ﬂ)
C(b2,0) = V(Cpr0)+1 = Yy, 0y (yr(0)+1))
From here b corresponds to €2y, (0)41
C(Q2,b) corresponds to 2y, (0)+2
Qs + 1, a) corresponds to 0y, (0)+w
292, a) corresponds to 2y, (0)2
(QQ2 + 15 0)7 O) = ’l/)(le(mw)
(222 +Q,0),0) = ¢¥(Qy, (0)0)
(2224 C(Q2+1,0),0),0) = (g, 0)02.,)
(222 + C(Q2 + C(£22,0),0)),0) = 1 (2y; (0)020)
(QQQ"’C QQ +CL O) 0) 0) ’(ﬂ(le(O))
(922 =+ C QQ —+a O) (QQ2 + C(QQ +a O) 0)) 0) = ¢(Q¢I(O)22)
(QQ2+C QQ+a 0)+1 0)) 7/}(91#1(0)2)
(922 +C(Qy+a 0))) ’@/J(le(o)e,)
C(Q2 4+ C(022,0),) corresponds to ¢7(0)
(2224 C(C(Q2 +a,0) +1,C(Q2 + a,0)),0),0) = (Qy, (0)~)
(Q22 + C(C(C(Q22 + a,0), C(Qg +a,0)), C(Q2 +a,0)),0),0) = P (Qy, o)1)
(Q22 + O(22, (22 + a,0)),0),0) = ¥(Qe,, .,
C(Q2,C(Q22 + C(222,0),0)) corresponds to 2y, (0)+1

Az QQaaQaaq

(22 + C(22 +1,0(22 +4,0)),0),0) = ¥(Qq, ..,

(Q 2+ O(QQ + O(QQ +a 0) O(QQ + CL,O)),O),O) = d)(QQwI(O)Z)
(QQQ + C(QQ +a, C(QQ + a, 0)) O)) = ¢(¢](1))
(Q2+C(22+a+1,0),0),0) = (¢ (w))

(222 + C(Q2 4 a2,0),0),0) = (¥r(1))

2[R9 RQQ0E0N0 000000

QQQQQF‘D

19.4.4 Up to the limit of ”standard OCFs”

Here we still keep the shorthands a = C(£2:2,0) b = C(Qs, a).

Also here the equal sign means ” corresponds to in psi notation” because TON expressions like C'(252+C(Q22+C(C(Q2, C(222,0)), C (£
may correspond to ¥;(I) in psi function,yet the actual expressions are less than Qo itself,which is way less than ().
C(222+ C(Q2 4+ a,C(Q2 4+ a2,0)),0) = (I +1)

(922 + C(QQ +a+1 C(QQ + a2 0))) = ¢](I —l—w)
C(2224+C(Q2+a+ C(Qz +a2,0),C(Q2 4+ a2,0)),0) = (I +¥r(1))
(224 C (2 +a2,C(Qg + a2,0)),0) = (12)
(2 + C(Q2 + a2+ 1,0),0) = oy (Iw)
(QQ2+C(QQ+(I3 0)) 1,[)[(]2)
(24 C(Q22+ C(a+1,a),0),0) = (I
(€222 + C(Q2 + C(C(a, a),a),0),0) = ¢ (I')
(222 + C(Q +C(C(Cla, a),a), a),0),0) = s (1)
(224 C(22+0,0),0) = r(ers1)
0(922 + C(QQ, C(QQ + b, O)), 0) = w[(€[+2)

Here C(Qs + v, C (22 + C(Q2,C(Q22,0)),0)) corresponds to Qv
C(2,C(Q2 4+ b,0)) corresponds to Q41

C(Q2+ a,C(22 +b,0)) corresponds to ¥y, (0)
(Q24+a+1,C(22+b,0)) corresponds to ¢y, (w)

(Q2 4 a2,C (2 + b,0)) corresponds to ¢y, (I2)

(Q2 4+ b,C(22 4+ b,0)) corresponds to ¥, (er,+1)

(Q2 + b+ 1,0) corresponds to I,
(
(
(
(

c
c
C
C
c
C
C

C

)
Qs 4+ b+ 7,0) corresponds to I~
Q2 + b+ a,0) corresponds to ¥7(1,0)(0)
Qs + b+ a2,0) corresponds to ¥y1,0)(I(1,0))
Qo + b+ C(b,a),0) corresponds to ¥r(1,0y(€7(1,0)41)
C(QQ + b2, O) Corresponds to ¢I(1,0) (C1(170)+1)
This so far seems to fit Taranovsky’s claims that:
C(Q2 4+ C(Q3,C(£222,0)),0) corresponds to I
C(Qa + C(Q2,C(922,0))2,0) corresponds to I(1,0)

C
c
c
C
C
c
c

114

C(Q2 + C(Q2,C(222,0))2,0) corresponds to M

C(Q2 + C(Q2,C(222,0))%2,0) corresponds to M(1,0)

C(Qs + C(Q2,C(9222,0))3,0) corresponds to =(3,0)

C(Q + C(Qy, C(0:2,0))C(22:C(222.0))) corresponds to K or Iz-reflection.

C(Q + C(Qa, C (22, 0))C (22,0 (222, 0" ,0) corresponds to I, o-reflection or the limit to any system using recursively IT}-

indescribable cardinals.

Therefore, C(C(Q2 + C(Q2 + C (0, C(0222,0))¢22:C(222.0)" 0) (), 0) is the proof-theoretic ordinal of KP + II,,, o-Reflection
and C(C(Q2 + C(Qy + C (s, C (22, 0))¢22,C(222.0)% "0) 0),0) is the limit to II,-reflection,the strongest ”standard ordinal
notation” and therefore marks the strength of ”standard OCFs.” There are only a few ordinal notations I know of which might
surpass this limit: Alemagno’s lambda notation

(http://googology.wikia.com/wiki/User_blog: Alemagnol12/Making_an_OCF, _attempt_2) ,Stegert’s notation (which I can’t
find any information for anywhere) and my Sigma Ordinal Notation

(http://googology.wikia.com/wiki/User_blog:Boboris02/Large number_combinatorics_T11:Sigma_ordinal_notation) that I de-
fined almost a year ago.

19.4.5 Beyond

Beyond that, Taranovsky has made multiple claims about the strength of the notation.

In an earlier analysis he gave some examples and proposed that C(C(....C(Qp+1 + 1,0)....),0) with n + 1 zeros might be the
proof theoretic ordinal of IT}, — C'Ag. If this is in fact true,then TON is just as strong as second order arithmetic,yet according
to him,this old analysis is wrong.

In newer articals,he has said that the overall function may be much stronger than Z5 and that the PTO of Z; might be
C(C(Q2w,0),0) or at least it may fall somewhere within his n=2 system. He has even claimed it to be stronger than
ZFC,claiming that C(C(Qaw, C(Q3 + Q5,0)),0),while still falling within the n=2 system might be the PTO of ZFC. If this is
true,then this makes not just TON,but specifically the n=2 system ridiculously strong.

Those claims for the recursive level of the notation range from Second Order Arithmetic (Z2) to Second Order Arithmetic
with Projectile Determinacy (Zs + PD). More specifically,he has given multiple possibilities for the strength of the overall
system which are as follows:

1. Not well founded;
2. Second Order Arithmetic;
3. Rudamentary Set Theory + ”there exists an n-subtle cardinal” for n is a natural number;

4. Second Order Arithmetic with Projectile Determinacy;

19.5 Second Order Arithmetic Subsystems in Terms of Taranovsky’s C
Source : https://googology.wikia.org/wiki/User_blog:Boboris02/Second_Order_Arithmetic_Subsystems_in_Terms_of_Taranovsky%27s_C

We define the proof-theoretic ordinal of a theory T (denoted with |T|con) as follows :

|T|con = least ordinal @ such that F + EC — TI(«) F Con(T)

where F is primitive recursion arithmetic and EC' — T'I(«) stands for transfinite induction up to a.
Here are some proof-theoretic ordinals in Taranovsky’s notation :

|RCAplcon = C(3,0) = C(C(0,C(0,C(0,0))),0)

|[W K Lo|con = |RC Ao|con = C(w,0) = C(C(C(0,0),0),0)

|AC Ao|con = C(1,0)

|AT Ro|con = C(12,0) = C(C(C(Q1,Q1),Q1),0)

I} — CAolcon = |AS — CAo|con = C(C(Q2 + 1,0),0) = C(C(C(0,2),0),0)

[TI} — CAlcon = C(C(Q2 +1,0) - £0,0) = C(C(C(C(C(Q2,0),0),C(C(0,02),0)), C(C(0,92),0)),0)
[T} — CA+4 BI|con = C(C(Qz2,C(Q2 +1,0)),0) = C(C(Q2, C(C(0,92),0)),0)

|} — TRo|con = C(C(Qs - 2,0),0) = C(C(C(Q2,Q),0),0)

A} — CA+ BI|con = |KPi|con = C(C(Q2 -2+ C(Qa 4+ C(Q2,C(Q2 - 2,0)),0),0),0)
= C(C(C(C(C(C(Q2,C(C(Q2,2),0)),022),0),C(Q2,Q2)),0),0)

|[PA|con = C(1,0)

|KP|con = C(C(Q2,0),0) = C(C(Q2,C(Q2,0)),0)

IML1 W|con = C(C(Q22 + C(Q2 + 1,C(Q2 4+ C(Q2, C(222,0)),0)),0),0)

= C(C(C(C(C(C(0,92),C(C(Q2,C(C(022,92),0)),92)),0), C(Q2,Q2)),0),0)

115

e |KPh|con = C(C(Q22 + C(Q2 + C(22,C(222,0))2,0),0), 0)
= C(C(C(C(C(C(C(Q2,C(C(Q22,22),0)), C(Q22, C(C(22,£22),0))), 22), 0), C(€22,2)), 0), 0)
° |KPM+‘con = C(C(Q22 + C(QQ +1 C(QQ + C(QQ, (922 0)))) 0),0)
=C(C(C(C(Cc(C(0,92),C(C(C(C(Q2,C(C(Q2,2),0)), (Qz, (C(92,92),0))),
0(9270(0(92792)7O)))792))70)70(92792))70)70)

19.6 Defining non recursive countable admissible ordinals with Taranovsky’s notation

Sources :

http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm
https://googology.wikia.org/wiki/User_blog:Boboris02/Algorithm_for_Generating_LUCOs_From_TON_Expressions_%2B_Intuitive_Analysis
https://googology.wikia.org/wiki/User_blog:Hyp_cos/ TON,_stable_ordinals,_and -my_array_notation

Let us put the following definitions

o a=C(Q-2,0) where Q3 -2 = C(Qg,s)

o a+ =C(Q,0a)

o d=a+ =C(Qz,a) = C(Q2,C(C(Q2,92),0))
e 0<kK<a

Then we have :

(Q2, k) is the least admissible ordinal after x.

(Q2 + d,0) is the least recursively inaccessible ordinal.

(Q2 + d, k) is the next recursively inaccessible ordinal after .

(Q2 + d,C(Q2 4 d,0)) is the second recursively inaccessible ordinal.
(Q2 + d - 2,0) is the least recursively hyperinaccessible ordinal.

(Q2 + d - 2,k) is the least recursively hyperinaccessible ordinal after &.
(Q2 + d?,0) is the least recursively Mahlo ordinal..

(
Q9 + d?,0) is the least II3-reflecting ordinal.

Qs + d?, k) is the least IIz-reflecting ordinal after k.

(
(

Oy + dd 0) is the least I4-reflecting ordinal.
Qo + dd ,0) is the least II5-reflecting ordinal.

QQQQQQQQQQ

0)

Qs + d?, k) is the least recursively Mahlo ordinal after .
0)
K)

.
Q

o C

19.7 Graphical representation

In https://googology.wikia.org/wiki/User_blog:Rpakr/Analysis_of_Taranovsky%27s_C_by _A A Agoogology_(Translation_by_me_and koteitan)
is presented a graphical representation for Taranovsky’s ordinal notation. In this notation, ordinals are represented by binary
trees. C(a,) is represented by a node C with the tree representing « above and the tree representing 5 on the right. This
representation may be simplified since there is only one node C, so it may be omitted. For a better visual effect, 0 may also
be replaced by a white circle and € by a black circle. Here are some examples of representations of ordinals in this simplified
graphical representation :

[N

1 =suc 0= C(0,0)

116

F

2 = suc(suc 0) = C(0,C(0,0))

s

3 = suc(suc(suc 0)) = C(0,C(0,C(0,0)))

b5

w = Hsuc 0 = C(C(0,0),0)

-

w~+ 1= suc(Hsuc 0) = C(0,C(C(0,0),0))

=

w -2 = Hsuc(Hsuc 0) = C(C(0,0),C(C(0,0),0))

e

w-2+ 1= suc(Hsuc(Hsuc 0)) = C(0,C(C(0,0),C(C(0,0),0)))

€
|

2 = H(Hsuc)0 = C(C(0,C(0,0)),0)

117

w* = HHsuc 0 = C(C(C(0,0),0),0)

In system 1, with Q = Q; :
g0 = ¢(1,0) = ¢'(0,1) = Next w = RiHsuc 0 = C(Q,0)

F

g0 + 1 = suc(Ry Hsuc 0) = C(0,C(9,0))

8

g0 + 2 = suc(suc(RyHsuc 0)) = C(0,C(0,C(2,0)))

=

€0 +w = Hsuc(RyHsuc 0) = C(C(0,0),C(22,0))

=

g0 +w -2 = Hsue(Hsuc(RyHsuc 0)) = C(C(0,0),C(C(0,0),C(£,0)))

e

118

g0 +w? = H(Hsuc)(RyHsuc0) = C(C(0,C(0,0)),C(£,0))

KD

g0 + w* = HH suc(Ry Hsuc0)) = C(C(C(0,0),0),C(2,0))

K

€02 = RyHsuc(RyHsuc 0) = C(C(©,0),C(£,0))

=

€0 -3 = Ry Hsuc(R1Hsuc(RyHsuc 0)) = C(C(2,0),C(C(22,0),C(2,0)))

-

go-w = H(R1Hsuc)0 = C(C(0,C(2,0)),C(,0))

-k

eo - w? = H(H(RyHsuc))0 = C(C(0,C(0,C(€,0))), C(2,0))

=4

go-w* = HH(RyHsuc)0 = C(C(C(0,0),C(2,0)),C(Q,0))

=

0w’ = HHH (R, Hsuc)0 = C(C(C(C(0,0),0),C(€2,0)), C(,0))

™

119

e0? = Ry H (R H(Ry Hsuc))0 = C(C(C(,0), C(C(9,0), C(,0))), C(, 0))

&
€
I

=
=

LH)suc 0 = C(C(C(0,C(9,0)), C(2,0)), C(€,0))

€0 = RiH(RyH)suc 0 = C(C(C(C(,0),C(,0)), C(2,0)),C(2,0))

F

[0

1=¢(1,1) =¢'(0,2) = R (R1H)suc 0 = C(Q,C(22,0))

120

¢ (0,w) = HR1Hsuc 0 = C(C(0,9),0)

ew = o(l,w) =

€2 = H(HR1)Hsuc 0 = C(C(0,C(0,1)),0)

B

eww = HHR1Hsuc 0 = C(C(C(0,0),£),0)

-

ggew = HHHR;Hsuc 0 = C(C(C(C(0,0),0),),0)

E

€eo = RiHR1Hsuc 0 = C(C(C(£,0),),0)

:

€e., = MHRIHR 1 Hsuc 0 = C(C(C(C(C(£,0),9),0),9),0)

€

121

Co=9(2,0) =¢'(1,1) = [0]Next w = RyR1Hsuc 0 = C(C(£,1),0)

Cl = @(2, 1) = gﬁl(l, 2) = RgRl(RleH)SUC 0= O(C(Q, Q), C(C(Q, Q), O))

G2 = @(2, 2) = 90/(173) = RQRI(R2R1(R2R1H))SUC 0= C(C(Qv Q)7 C(C(Q, Q)7 C(C(Q7 Q),O)))

[

e
€
Il

o(2,w) = ¢'(1,w) = H(RaRy)Hsuc 0 = C(C(0,C(2,9)),0)

Nt

Ceo = RoRiH(RyRy)Hsue 0 = C(C(C(C(,9),0),C(2,9)),0)

I f'wo

Ce. = H(RoRy)H(RoRy)Hsuc 0 = C(C(C(C(0,C(9,9Q)),0), C(,Q)),0)

oy

o = ¢(3,0) = ¢'(2,1) = Re(Re2R1)Hsuc 0 = C(C(22,C(2,9Q)),0)

122

5
€

0) = ¢/(w,1) = HRyR1 Hsuc 0 = C(C(C(0,),Q),0)

%

plw+1,0) = ¢ (w+1,1) = Ry(HR2 Ry)Hsuc 0 = C(C(22,C(C(0,9),9)),0)

plw-2,0)=¢'(w-2,1) = HR2(HR2R;)Hsuc 0 = C(C(C(0,9Q),C(C(0,9),9)),0)

o(w?,0) = ¢'(w?, 1) = H(HR2)R1Hsuc 0 = C(C(C(0,C(0,9)),£),0)

o(w?,0) =¢'(w¥,1) = HHRyR1Hsuc 0 = C(C(C(C(0,0),9),),0)

o(w*") = ¢ (W) = HHHRyR Hsuc 0 = C(C(C(C(C(0,0),0),9),9),0)

123

e

©(e0,0) = v(p(1,0),0) = RiHRyR1Hsuc 0 = C(C(C(C(£,0),0),Q),0)

perey

©(€0,0) = ¢(v(2,0),0) = ReR1HRyR1Hsuc 0 = C(C(C(C(C(£,),0),0),9Q),0)

e

0(p(w,0),0) = HRyRi HRyRy Hsuc 0 = C(C(C(C(C(C(0,9),9),0),9),Q),0)

[

50(90(507 O)’ 0) = W(@(@(la 0), O)’ 0) = RiHRyR1HRy Ry Hsuc 0 = C(C(C<C(C(C(C<Q7 0), Q)v Q), 0)’ Q), Q)7 0)

ey

I'o = ¢(1,0,0) = ¢’(1,0,1) = [1][0]Next w = RgRaR1Hsuc 0 = C(C(C(2,0),9),0)

=

1 =¢(1,0,1) = @/(1707 2) = RgRaR1(R3R2 R H)suc 0 = C(C(C(£,),Q),C(C(C(Q,9Q),9),0))

L e

124

—

o =¢(1,0,0) = ¢'(1,0,w) = H(R3RsRy) Hsue 0 = C(C(0,C(C(2,Q),9)),0)

peTy

=
S

= [2][1][0]Next w = R4R3R2R1 Hsuc 0 = C(C(C(C(2,0),9Q),Q),0)

-

—0
In system 2, with Q = Q9 :
LVO = [2][1][0]Next w = R4R3R2R1Hsuc 0 = C(C(C(C(C(2,0),C(£,0)),C(Q,0)),C(£,0)),0)

BHO = [w...0]Next w =R, 1Hsuc 0 = C(C(Q,C(2,0)),0)

TFBO = C(C(Q,C(C(0,9),0)),0)

L

1 1
I} — CAgloon = |AL — CAgloen = C(C(C(0,9),0),0)

125

mg

[— CAlcon = C?C(C(C(C(Qa0)»0)7C(C(O,Q),O)),C(C(O,Q),O)),o)

1 &

)
‘H]i —CA+ BI|COn = C(C(Q7 C(C(O7 Q)a 0))7 0)

L

—0
I} — TRolcon = C(C(C(€2,9),0),0)

126

o
‘A% — CA + BI|Con = |KPi|Con = C(O(C(C(C(O(Q7 C(O(Q7 Q)’ 0))7 Q)v 0)7 C(Qv Q))? 0)7 O)

1,

——
‘KP‘COH = C(C(Qv C(Qv 0))7 O)

127

[
1.

o
IML1 Wlcon = C(C(C(C(C(C(0,9),C(C(2,C(C(2,9),0)),9)),0),C(,9)),0),0)

e
1.

—)
|KPh|con = C(C(C(C(C(C(C(2,C(C(2,9),0)),C(2,C(C(2,9Q),0))),£),0),C(Q,9)),0),0)

128

.0
IKPM ™ |con = C(C(C(C(C(C(0,9), C(%(C(C(Q, C(C(Q,9),0)),C(Q,C(C(Q2,92),0))),C(Q,C(C(2,0),0))),Q)),0),C(£2,2)),0),0)

129

L

©
|KP + II3 — Reflection|con

=ccrerereeeem oce,0),0),cQ,0(C(Q,9),0))),C(Q,C(C(2,),0))),C(Q,C(C(02,0),0))),9),0),C(£2,2)),0),0

7

Here is a Haskell program generating LaTeX code of graphical representation of ordinals :

module Main where

import System.IO

130

-- Definition of ordinals in Taranovsky Ordinal Notation
data Ton = 0 | W | C Ton Ton
deriving (Eq, Show)

latex 0 = "0O"

latex W = "\\Omega"

latex (C a b) = "C(" ++ latex a ++ "," ++ latex b ++ ")"

--graphl x y s r 0 = "\\put(" ++ show x ++ "," ++ show y ++ "){0}\n"

graphl x y s r 0 = "\\put(" ++ show x ++ "," ++ show y ++ "){\\circle{2}}\n"

—--graphl x y s r W = "\\put(" ++ show x ++ "," ++ show y ++ "){$\\Omega$}\n"

graphl x y s r W = "\\put(" ++ show x ++ "," ++ show y ++ "){\\circle*{2}}\n"

graphl x y s r (C a b) = "\\put(" ++ show x ++ "," ++ show y ++ "){\\1ine(0,1){" ++ show s ++ "}}\n" ++ "\\put(

graph sra=1lett=s* (1 /r) / ((1 /1) - 1) in
"\n\\setlength{\\unitlength}{1mm}\n\\begin{picture}(" ++ show t ++ "," ++ show t ++ ")\n" ++ graphl 0 0 s r a

pgraph 1 a s r = do

out <- openFile "ton_graph_inc.tex" AppendMode
hPutStr out (graph s r a)

hPutStr out ("$" ++ 1 ++ "$ = $" ++ latex a ++ "$\n")

main = do

out <- openFile "ton_graph_inc.tex" WriteMode

pgraph "1 = suc\\ 0" (C 0 0) 6 0.8

pgraph "2 = suc (suc\\ 0)" (C 0 (C 0 0)) 6 0.8

pgraph "3 = suc (suc (suc\\ 0))" (C 0 (C 0O (C00))) 60.8

pgraph "\\omega = H suc\\ 0" (C (C 0 0) 0) 6 0.8

pgraph "\\omega+l = suc (H suc\\ 0)" (C 0 (C (C 0 O0) 0)) 6 0.8
pgraph "\\omega \\cdot 2 = H suc (H suc\\ 0)" (C (C00) (C (C00) 0)) 10 0.6
pgraph "\\omega \\cdot 2+1 = suc (H suc (H suc\\ 0))" (C 0O (C (C00) (C (C0OO0) 0))) 10 0.6
pgraph "\\omega~2 = H (H suc) 0" (C (C 0O (C0O0)) 0) 6 0.8

pgraph "\\omega“\\omega = H H suc\\ 0" (C (C (C00) 0) 0) 6 0.8
pgraph "\\text{In system 1, with } \\Omega = \\Omega_1 :$\n\n$\\varepsilon_0 = \\varphi(1,0) = \\varphi’(0,1)
pgraph "\\varepsilon_0+1 = suc (R_1 H suc\\ 0)" (C 0 (C W 0)) 6 0.8
pgraph "\\varepsilon_0+2 = suc (suc (R_1 H suc\\ 0))" (C 0 (C 0 (CWO0))) 60.8
pgraph "\\varepsilon_O+\\omega = H suc (R_1 H suc\\ 0)" (C (C 0 0) (C W 0O)) 10 0.6
pgraph "\\varepsilon_O+\\omega \\cdot 2 = H suc (H suc (R_1 H suc\\ 0))" (C (C00) (C (C00) (CW0)) 10 0.
pgraph "\\varepsilon_O+\\omega"2 = H (H suc) (R_1 H suc 0)" (C (C0O (C0 D)) (CWO0D) 60.8
pgraph "\\varepsilon_O+\\omega“\\omega = H H suc (R_1 H suc 0))" (C (C (C 0 0) 0) (CWO0)) 10 0.6
pgraph "\\varepsilon_0 \\cdot 2 = R_1 H suc (R_1 H suc\\ 0)" (C (C W 0) (CWO0)) 10 0.6
pgraph "\\varepsilon_0 \\cdot 3 = R_1 H suc (R_1 H suc (R_1 H suc\\ 0))" (C (C W 0) (C (CWO0O) (CWO0))) 10 0.
pgraph "\\varepsilon_0 \\cdot \\omega = H (R_1 H suc) 0" (C (C 0 (C W 0)) (CW0)) 10 0.6
pgraph "\\varepsilon_0 \\cdot \\omega"2 = H (H (R_1 H suc)) 0" (C (C 0 (C 0 (CW0))) (CW0O)) 10 0.6
pgraph "\\varepsilon_0 \\cdot \\omega“\\omega = H H (R_1 H suc) 0" (C (C (C 0 0) (CwWO0)) (CWO0)) 10 0.6
pgraph "\\varepsilon_0 \\cdot \\omega“{\\omega“\\omega} = H H H (R_1 H suc) 0" (C (C (C (C 0 0) 0) (CW0) (
pgraph "{\\varepsilon_0}"2 = R_1 H (R_1 H suc) 0" (C (C (CW0O) (CWO)) (CWO)) 10 0.6
pgraph "{\\varepsilon_0}"3 = R_1 H (R_1 H (R_1 H suc)) 0" (C (C (CW0) (C(CWO0) (CWO0))) (CWO0)) 10 0.6
pgraph "{\\varepsilon_0}"\\omega = H (R_1 H) suc\\ 0" (C (C (C 0 (C W 0)) (CWO0)) (CWO0)) 10 0.6
pgraph "{\\varepsilon_0}"{\\omega~\\omega} = H H (R_1 H) suc\\ 0" (C (C (C (C00) (CWO0)) (CW0)) (CWwWO0)
pgraph "{\\varepsilon_0}"{\\omega~{\\omega"\\omega}} = H H H (R_1 H) suc\\ 0" (C (C (C (C (C 0 0) 0) (CWwWO0)
pgraph "{\\varepsilon_0}"{\\varepsilon_0} = R_1 H (R_1 H) suc\\ 0" (C (C (C (CWO0) (CWO0)) (CWO0)) (CWDO0);

131

pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph

pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph
pgraph

"\\varepsilon_1 = \\varphi(1,1) = \\varphi’(0,2) = R_1 (R_1 H) suc\\ 0" (CW (CWO0)) 6 0.8
"\\varepsilon_\\omega = \\varphi(1l,\\omega) = \\varphi’(0,\\omega) = H R_1 H suc\\ 0" (C (C 0 W) 0) 6 (
"\\varepsilon_{\\omega"2} = H (H R_1) H suc\\ 0" (C (C 0 (C O W)) 0) 6 0.8
"\\varepsilon_{\\omega~\\omega} = H H R_1 H suc\\ 0" (C (C (C00) W) 0) 6 0.8
"\\varepsilon_{\\omega~{\\omega~\\omega}} = H H H R_1 H suc\\ 0" (C (C (C (CO
"\\varepsilon_{\\varepsilon_0} = R_1 H R_1 H suc\\ 0" (C (C (CWO0O) W) 0) 6 0.8
"\\varepsilon_{\\varepsilon_{\\varepsilon_0}} = R_1 H R_1 H R_1 H suc\\ 0" (C (C (C (C (CW0) W) 0) W
"\\zeta_0 = \\varphi(2,0) = \\varphi’(1,1) = [0] Next\\ \\omega = R_2 R_1 H suc\\ 0" (C (C W W) 0) 6 0.
"\\zeta_1 = \\varphi(2,1) = \\varphi’(1,2) = R_2 R_1 (R_2 R_1 H) suc\\ 0" (C (C W W) (C (CWW 0)) 10
"\\zeta_2 = \\varphi(2,2) = \\varphi’(1,3) = R_2 R_1 (R_2 R_1 (R_2 R_1 H)) suc\\ 0" (C (CWW) (C (CW
"\\zeta_\\omega = \\varphi(2,\\omega) = \\varphi’(1,\\omega) = H (R_2 R_1) H suc\\ 0" (C (C 0 (C W W))
"\\zeta_{\\zeta_0} = R_.2 R_.1 H (R_2 R_1) H suc\\ 0" (C (C (C (CW W) 0) (CWW)) 0) 10 0.6
"\\zeta_{\\zeta_\\omega} = H (R_2 R_1) H (R_2 R_1) H suc\\ 0" (C (C (C (CO (CWW) 0) (CWW) 0) 8
"\\eta_0 = \\varphi(3,0) = \\varphi’(2,1) = R_2 (R_2 R_1) H suc\\ 0" (C (C W (CW W) 0) 6 0.8
"\\varphi(\\omega,0) = \\varphi’(\\omega,1) = H R_2 R_1 H suc\\ 0" (C (C (C O W) W) 0) 6 0.8

"\\varphi (\\omega+1,0) = \\varphi’(\\omega+1,1) = R_2 (H R_2 R_1) H suc\\ 0" (C (CW (C (CO W W) 0
"\\varphi (\\omega \\cdot 2,0) = \\varphi’(\\omega \\cdot 2,1) = HR_2 (H R_2 R_1) H suc\\ 0" (C (C (C(
"\\varphi (\\omega~2,0) = \\varphi’(\\omega~2,1) = H (H R_2) R_1 H suc\\ 0" (C (C (C O (CO W) W) 0) 6
"\\varphi(\\omega~\\omega,0) = \\varphi’(\\omega~\\omega,1) = H H R_2 R_1 H suc\\ 0" (C (C (C (C 0 0) ¥
"\\varphi(\\omega~{\\omega~\\omegal}) = \\varphi’(\\omega“{\\omega~\\omega}) = H H H R_2 R_1 H suc\\ 0"
"\\varphi (\\varepsilon_0,0) = \\varphi(\\varphi(1,0),0) = R_1 H R_2 R_1 H suc\\ 0" (C (C (C (CW0O) W
"\\varphi (\\zeta_0,0) = \\varphi(\\varphi(2,0),0) = R_.2 R_1 H R_2 R_1 H suc\\ 0" (C (C (C (C (C W W) 0)
"\\varphi (\\varphi (\\omega,0),0) = H R_2 R_1 H R_2 R_1 H suc\\ 0" (C (C (C (C (C (COW W) 0) W) W) 0)
"\\varphi (\\varphi(\\varepsilon_0,0),0) = \\varphi(\\varphi(\\varphi(1,0),0),0) = R_.1 H R_.2 R_.1 HR_2 I
"\\Gamma_0 = \\varphi(1,0,0) = \\varphi’(1,0,1) = [1] [0] Next\\ \\omega = R_3 R_2 R_1 H suc\\ 0" (C (C
"\\Gamma_1 = \\varphi(1,0,1) = \\varphi’(1,0,2) = R_.3 R_2 R_1 (R_3 R_2 R_1 H) suc\\ 0" (C (C (CW W) W
"\\Gamma_\\omega = \\varphi(1,0,\\omega) = \\varphi’(1,0,\\omega) = H (R_3 R_2 R_1) H suc\\ 0" (C (C O
"\\text{LV0} = [2] [1] [0] Next\\ \\omega = R_4 R_3 R_2 R_1 H suc\\ 0" (C (C (C (CW W) W) W) 0) 6 0.8
"\\text{In system 2, with } \\Omega = \\Omega_2 :$\n\n$\\text{LV0} = [2] [1] [0] Next\\ \\omega = R_4 I
"\\text{BHO} = [\\omega \\ldots 0] Next\\ \\omega = R_{\\omega \\ldots 1} H suc\\ 0" (C (C W (C W 0))
"\\text{TFBO}" (C (C W (C (C O W) 0)) 0) 6 0.8

0) 0) W) 0) 60.8

"IN\Pi~{1}_1-\\text{CA}_O|_{\\text{Con}} = [\\Delta~{1}_2-\\text{CA}_O|_{\\text{Con}}" (C (C (C 0 W) 0O)
"IN\Pi~1_1-\\text{CA}|_{\\text{Con}}" (C (C (C (C (CW0O) 0) (C(COW 0)) (cC(cCOowW 0)) 0 300.5
"IN\Pi~ {1} _1-\\text{CA}+\\text{BI}| _{\\text{Con}}" (C (C W (C (C O W) 0)) 0) 10 0.8
"IN\Pi~{1}_1-\\text{TR}_O|_{\\text{Con}}" (C (C (C W W) 0) 0) 10 0.8
"I\\Delta"{1}_2-\\text{CA}+\\text{BI}|_{\\text{Con}} = [\\text{KPi}|_{\\text{Con}}" (C (C (C (C (C (C}V
"I\\text{KP}|_{\\text{Con}}" (C (C W (C W0O)) 0) 10 0.8

"[\\text{ML}_1\\text{W}|_{\\text{Con}}" (C (C (C (C (C (COW) (C(CW [(CWW 0) W) 0D (CWW)C
"I\\text{KPh}| _{\\text{Con}}" (C (C (C (C (C(C(CW (C(CWW 0) (CW(((CWW 0))) W 0) (CWW)
"I\\text{KPM}"+| _{\\text{Con}}" (C (C (C (C (C (COW) (C(C(C((CW(CCWW0) (€W CWwW 0
"I\\text{KP}+\\Pi_3 - \\text{Reflection}|_{\\text{Con}}$\n\n$ " (C (C (C (C (C (C (C (C (C W (C (CWW

Another possibility to represent expressions in Taranovsky’s system 2 is to represent 2 = Q by a black circle with another
circle around it and ©Q; = C(Q2,0) = C(92,0) by a simple black circle, 0 being still represented by a white circle. Here are
some examples of representations of ordinals :

g0 = ¢(1,0) = ¢'(0,1) = Next w = RyHsuc 0 = C(Q,0)

132

Co=9(2,0) =¢'(1,1) = [0]Next w = RyR1Hsuc 0 = C(C(£,1),0)

e

=¢(1,0,0) = ¢'(1,0,1) = [1][0]Next w = R3RoR1Hsuc 0 = C(C(C(2,9),),0)

Ty

LVO = 2][1][0]Nezt w = RyR3 R R1 Hsuc 0 = C(C(C(C(,9),9Q),Q),0)

[1®

™
s

O=[w...0)Next w= R, 1Hsuc 0= C(C(Q,0),0)

3

BHO -2 =R, 1Hsuc(R, 1Hsuc0) = C(C(C(22,9),0),C(C(22,2),0))

7

BHO? = Ry 1H(R...1 Hsuc)0 = C(C(C(C(Qs,Q),0), C(C(Qs,Q),0)), C(C(Qs,9),0))

133

s

I

BHOPHO = R, \H(Ro_yH)suc 0 = C(C(C(C(C(05,9),0), C(C(0s, 9),0)), C(C(02,0),0)), O(C(52,2), 0)

e

EBHO+1 = Rl(Rw_an)suc 0= O(Q,O(O(QQ,Q),O))

g

EBHO+2 = Rl(Rl(Rw__,lH))SUC 0= C(Q,C(Q,C(C(QQ,Q),O)))

Ele

EBHO+€BH0+1 = R1(Rw,,,lH)Rl(melH)suc 0= C(C(C(Q,0(0(9279),0))79), C(C(QQ,Q),O))

[

CBHO+1 = RaRi(Ru. 1 H)suc 0 = C(C(Q,Q),C(C(Q,R),0))

e

Ry 1(Ry. 1H)suc 0 = C(C(Q2,Q),C(C(02,9),0))

134

©

@,

P

HRw 1 Hsuc 0 = C(C(0,C(Q,9)),C(C(Q,9),0))

LT

R, 1HR, 1Hsuc0 = 0(0(0(0(927 Q)a 0)7 0(923 Q))’ O)

[fe

RyR, 1 Hsuc 0 = C(C(Qv C(Q% Q)),O)

=)

o
R3R2R,,.. 1Hsuc 0 = C(C(C(Q,0),C(02,9)),0)

&

L—o
FiélR?)]%QRw..JFISUC 0= O(C(C(C(Q7 Q)a Q)v C(QZ7 Q))7 O)

wa

Rw...ZRw...leuc 0= C(C(C(Q27 Q)» 0(927 Q))? 0)

0
—e

| ¥

Rw...BRw..QRw..‘lHSUC 0= Rw~3...1HSUC 0= C(C(C<Q27 Q)a C(C(Q2a Q)7 C(QQa Q)))7 0)

135

%
—o
Rz 1Hsuc 0 = C(C(C(0,C(93,9)), C(Q,Q)),0)

0]

R

P,

L——»o
R,s 1Hsuc 0 = C(C(C(0,C(0,C(92,9))),C(02,1)),0)

.

Ry 1Hsuc 0 = C(C(C(C(0,0), C (22, 2)), C(Q2,1)),0)

[¥

R, ww 1Hsuc 0 = C(C(C(C(C(0,0),0),C(Q,9Q)),C(022,9)),0)

[[

R, . 1Hsuc 0= C(C(C(C(2,0),C(£22,9)),C(22,9)),0)

[&

Re,..1Hsuc 0 = C(C(C(C(C(Q,Q),0),C(Q,9)),C(Q,Q)),0)

N

136

= C(C(C(C(C(C(9,9),9),0),C(Q,9)), C(€22,1)),0)

}@3) PORES
i;m

—0
RBHO”_lHS’U,C 0= RRM_‘_leuc (]_”1HS’LLC 0= C(C(C(C(C(QQ,Q), 0), C(QQ, Q)), 0(927 Q)),O)

[

RRRW..JHS“C o..1Hsuc 0..1Hsuc 0 = C(O(C(C(C(C(O(C<927 Q)a O)v C(QQ7 Q))a 0(925 Q))v O)v O(QQ’ Q))v 0(927 Q))a 0)

[[

H[R,. 1Hsuc 0|0 = C(C(C(Q,C(922,9Q)),C(Q2,9Q)),0)

Here is a Haskell program generating LaTex code for this representation :
module Main where

import System.IO

—-— Definition of ordinals in Taranovsky Ordinal Notation

data Ton =0 | W | W2 | C Ton Ton
deriving (Eq, Show)

137

latex 0 = "O"

latex W = "\\Omega"

latex W2 = "\\Omega_2"

latex (C a b) = "C(" ++ latex a ++ "," ++ latex b ++ ")"

--graphl x y s r 0 = "\\put(" ++ show x ++ "," ++ show y ++ "){0}\n"

graphl x y s r 0 = "\\put(" ++ show x ++ "," ++ show y ++ "){\\circle{2}}\n"

-—graphl x y s r W = "\\put(" ++ show x ++ "," ++ show y ++ "){$\\Omega$}\n"

graphl x y s r W = "\\put(" ++ show x ++ "," ++ show y ++ "){\\circle*{2}}\n"

graphl x y s r W2 = "\\put(" ++ show x ++ "," ++ show y ++ "){\\circlex{2}}\n\\put(" ++ show x ++ "," ++ show j
graphl x y s r (C a b) = "\\put(" ++ show x ++ "," ++ show y ++ "){\\1ine(0,1){" ++ show s ++ "}}\n" ++ "\\put(

graph sra=1lett=sx* (1 /r) / (1 /1r)-1) in
"\n\\setlength{\\unitlength}{imm}\n\\begin{picture}(" ++ show t ++ "," ++ show t ++ ")\n" ++ graphl 0 0 s r a

pgraph 1 a s r = do

out <- openFile "ton_graph_wn_bho_inc.tex" AppendMode
hPutStr out (graph s r a)

hPutStr out ("$" ++ 1 ++ "$ = $" ++ latex a ++ "$\n")

main = do
out <- openFile "ton_graph_wn_bho_inc.tex" WriteMode

pgraph "\\varepsilon_0 = \\varphi(1,0) = \\varphi’(0,1) = Next\\ \\omega = R_1 H suc\\ 0" (C W 0) 6 0.8
pgraph "\\zeta_0 = \\varphi(2,0) = \\varphi’(1,1) = [0] Next\\ \\omega = R_2 R_1 H suc\\ 0" (C (C W W) 0) 6 0.
pgraph "\\Gamma_O = \\varphi(1,0,0) = \\varphi’(1,0,1) = [1] [0] Next\\ \\omega = R_3 R_2 R_1 H suc\\ 0" (C ((
pgraph "\\text{Lv0} = [2] [1] [0] Next\\ \\omega = R_4 R_3 R_2 R_1 H suc\\ 0" (C (C (C (CWW) W) W) 0) 6 0.8
pgraph "\\text{BHO} [\\omega \\ldots 0] Next\\ \\omega = R_{\\omega \\ldots 1} H suc\\ 0" (C (C W2 W) 0) 6 (
pgraph "BHO \\cdot 2 = R_{\\omega \\ldots 1} H suc (R_{\\omega \\ldots 1} H suc\\ 0)" (C (C (C W2 W) 0) (C («
pgraph "BHO"2 = R_{\\omega \\ldots 1} H (R_{\\omega \\ldots 1} H suc) 0" (C (C (C (C W2 W) 0) (C (C W2 W) 0))
pgraph "BHO“{BHO} = R_{\\omega \\ldots 1} H (R_{\\omega \\1ldots 1} H) suc\\ 0" (C (C (C (C (C W2 W) 0) (C (C ¥
pgraph "\\varepsilon_{BHO+1} = R_1 (R_{\\omega \\ldots 1} H) suc\\ 0" (C W (C (C W2 W) 0)) 6 0.8

pgraph "\\varepsilon_{BHO+2} = R_1 (R_1 (R_{\\omega \\ldots 1} H)) suc\\ 0" (C W (C W (C (C W2 W) 0))) 6 0.8
pgraph "\\varepsilon_{BHO+\\varepsilon_{BHO+1}} = R_1 (R_{\\omega \\ldots 1} H) R_1 (R_{\\omega \\ldots 1} H)
pgraph "\\zeta_{BHO+1} = R_2 R_1 (R_{\\omega \\ldots 1} H) suc\\ 0" (C (C W W) (C (C W2 W) 0)) 6 0.8

pgraph "R_{\\omega \\ldots 1} (R_{\\omega \\ldots 1} H) suc\\ 0" (C (C W2 W) (C (C W2 W) 0)) 6 0.8

pgraph "H R_{\\omega \\ldots 1} H suc\\ 0" (C (C 0 (C w2 W)) (C (C W2 W) 0)) 12 0.5

pgraph "R_{\\omega \\ldots 1} H R_{\\omega \\ldots 1} H suc\\ 0" (C (C (C (C W2 W) 0) (C W2 W)) 0) 10 0.6
pgraph "R_2 R_{\\omega \\ldots 1} H suc\\ 0" (C (C W (C W2 W)) 0) 6 0.8

pgraph "R_3 R_2 R_{\\omega \\ldots 1} H suc\\ 0" (C (C (C W W) (C W2 W)) 0) 10 0.6

pgraph "R_4 R_3 R_2 R_{\\omega \\ldots 1} H suc\\ 0" (C (C (C (C W W) W) (C W2 W)) 0) 10 0.6

pgraph "R_{\\omega \\ldots 2} R_{\\omega \\ldots 1} H suc\\ 0" (C (C (C W2 W) (C W2 W)) 0) 10 0.6

pgraph "R_{\\omega \\ldots 3} R_{\\omega \\ldots 2} R_{\\omega \\ldots 1} H suc\\ 0 = R_{\\omega \\cdot 3 \\Ic
pgraph "R_{\\omega~2 \\ldots 1} H suc\\ 0" (C (C (C 0 (C W2 W)) (C W2 W)) 0) 10 0.6

pgraph "R_{\\omega~3 \\ldots 1} H suc\\ 0" (C (C (C 0 (C 0 (C W2 W))) (C W2 W)) 0) 20 0.5

pgraph "R_{\\omega~\\omega \\ldots 1} H suc\\ 0" (C (C (C (C 0 0) (C W2 W) (C W2 W) 0) 10 0.6

pgraph "R_{\\omega"{\\omega~\\omega} \\ldots 1} H suc\\ 0" (C (C (C (C (C 0 0) 0) (C w2 W) (C W2 W)) 0) 10 0.
pgraph "R_{\\varepsilon_0 \\ldots 1} H suc\\ 0" (C (C (C (C W 0) (C W2 W)) (C W2 W)) 0) 10 0.6

pgraph "R_{\\zeta_0 \\ldots 1} H suc\\ 0" (C (C (C (C (C W W) 0) (CWwW2 W) (CW2W) 0) 10 0.6

pgraph "R_{\\Gamma_0 \\ldots 1} H suc\\ 0" (C (C (C (C (C (CW W) W) 0) (CWwW2 W) (CW2W)) 0) 16 0.6

pgraph "R_{BHO \\ldots 1} H suc\\ 0 = R_{R_{\\omega \\ldots 1} H suc\\ 0 \\ldots 1} H suc\\ 0" (C (C (C (C (C

138

pgraph "R_{R_{R_{\\omega \\ldots 1} H suc\\ 0 \\ldots 1} H suc\\ 0 \\ldots 1} H suc\\ 0" (C (C (C (C (C (C (C
pgraph "H [R_{\\bullet \\ldots 1} H suc\\ 0] 0" (C (C (C W (C W2 W)) (C W2 W)) 0) 10 0.6

19.8 Other Taranovsky’s ordinal notation systems
In http://web.mit.edu/dmytro/www /other/OrdinalNotation.htm, Taranovsky describes several ordinal notation systems, which

are also summerized in https://googology.wikia.org/wiki/User:Hyp_cos/Taranovsky’s_various_ordinal notations.

For example, in the system called ”Degrees of Reflection”, the condition ”« is n-built from below from C(a, 8) which appears
in the definition of standard forms is replaced by :

VeeTVyCao(z<y<Q) = FzJyz<QA(zdzVz<Clap))

where z C y and y J x mean that x is a subset of y and C y and y 3 2 mean that x is a proper subterm of y (a subterm of
y different from y).

19.9 References

http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm
https://stepstowardinfinity.wordpress.com,/2015/06 /22 /ordinal3/
http://googology.wikia.com /wiki/User_blog:Hyp_cos/Fundamental_Sequences_in_Taranovsky%27s_Notation

20 ”Concatenation” of ordinal notations

An ordinal notation can be considered as a function Ord such that Ord(s) = « where s is a character string and « is the
ordinal represented by this character string in the considered notation.

Suppose we have two ordinal notations represented by the functions Ord; and Ordsy, whose limits are respectively A\; and As.
From these two ordinal notations, we can define an ordinal notation Ord which we will call the ”concatenation” of these two
ordinal notations, defined for example by :

e Ord("1,”.s) = Ordy(s)
e Ord("2,”.s) = A + Ordsy(s)

The limit of this notation is A1 + Asa.
The concatenation of ordinal notation can be generalized to any number of notations.

21 Proof-theoretic ordinals

21.1 Definition

The proof-theoretic ordinal of a theory is a measure of the strength of this theory.
The proof-theoretic ordinal of a theory T can be defined in different equivanent ways :

e the smallest recursive ordinal that the theory cannot prove to be well founded

e the supremum of all ordinals for which there exists a notation such that the theory proves that this notation is an ordinal
notation

e the supremum of all ordinals « such that there exists a recursive relation R on w that well-orders it with « and such that
T proves transfinite induction of arithmetical statements for R.

For example, the proof-theoretic ordinal of Peano arithmetic is &q.

139

21.2 Trivial construction

In http://www.madore.org/ david/weblog/d.2017-08-31.2462.ordinaux-interessants.html, David Madore explains how to build
an ad-hoc ordinal notation whose limit is the proof theoretic ordinal of a given theory T (for example ZFC), but if the goal is
to better understand a theory, this notation is not very interesting because it is difficult to understand and not very explicit,
and does not teach us anything about the theory.

The representation of an ordinal in this notation is made of 3 elements (p,e,x) where p is a proof in T that a given Turing
machine e computes a well-ordering of w, and x € w. The comparison of two ordinals represented respectively by (p,e,x) and
(p’,e’,x’) is done by first comparing lexicographically p and p’, and if they are equal, comparing x and x’ with e.

Suppose for example that the least proof in lexicographical order is a proof py which proves that the Turing machine ey which
computes the "natural” ordering on w computes a well-ordering. This well-ordering is associated to the ordinal w. So an
ordinal below w (a natural number n) will be represented by (po, €g,). Then suppose the next proof is p; which proves that
the turing machine e; computes a well-ordering on w, and this well-ordering considers 0 as the largest element, the other being
ordered with "natural” order. This well-ordering is associated to w + 1. Then, in our notation, w is represented by (p1, €1, 1),
w+ 1 by (p1,e1,2), w+n by (p1,e1,1+n), and w -2 by (p1,e1,0).

This notation is effectively a correct computable, recursive ordinal notation whose limit is the proof theoretic ordinal of the
considered theory, but we see it is not a very ”natural” notation.

In https://mathoverflow.net/questions/164148 /is-there-a-computable-ordinal-encoding-the-proof-strength-of-zf-is-it-knowable,
Taranovsky says :

”The problem is that the above < is uninformative about T. A key goal of ordinal analysis is to find a canonical < that makes
the power of T simple and explicit, and thus give us a qualitatively better understanding of T. Existence of a noncanonical <,
combined with existence of canonical < for weaker theories, suggests that a canonical < also exists for ZFC, but it is difficult
to be certain until we actually find and prove such a <. Typically, an approach to finding < can be extended until it becomes
too complex, and then a new idea permits < to become simpler again.”

See also :

https://mathoverflow.net/questions/165338 /why-isnt-this-a-computable-description-of-the-ordinal-of-zf

21.3 Using trivial construction of proof-theoretic ordinals to define very large ordinals

We saw that a reason to define large ordinals can be to better understand theories by defining proof-theoretic ordinals of
these theories. We also saw that we can start with a theory to define trivially a proof-theoretic ordinal of this theory, using a
complicated, not very natural notation.

Another goal of defining large ordinals could be to raise the power of a theory. If we add to a theory the axiom of its own
consistency,, we get a more powerful theory. We can repeat this process, a finite number of times, or transfinitely many times.
Transfinite iteration of a reflection principle on a theory T up to an ordinal a gives a new theory 77 = TIRP(T, o) where the
function TIRP is defined by :

e TIRP(T,0) = T
e TIRP(T,a+1) = TIRP(T,«a)+Consis(TIRP(T,«))
e TIRP(T,lim f) = union for all integers n of TIRP(T,f(n))

From a given theeory T, we can build a more powerful theory T’ by iterating the reflection principle PTO(T) times, where
PTO(T) is the proof-theoretic ordinal of T defined trivially as the set of the ordinals represented by (p,e,x) where p is a proof
in T that the Turing machine e computes a well ordering on w : T’ = TIRP(T,PTO(T)).

We can even go further by defining a very fast growing ordinal function PT'OTIR Py which, to a given ordinal «, associates the
proof-theoretic ordinal of the theory obtained by transfinitely iterating « times the reflection principle on T : PTOTIRPr(«a) =
PTO(TIRP(T,a)). Then we can iterate PTO(T) times this function to get PTOTIRPp"T91)(0), and iterate transfinitely
this number of times the reflection principle to get the theory TIRP(T, PTOTIRP; 0T (0)).

22 Summary

Any ordinal can be defined as the least ordinal strictly greater than all ordinals of a set : the empty set for 0, {a} for the
successor of o, {ap, a1, g, ...} for an ordinal with fundamental sequence ag, oy, v, ...

22.1 Algebraic notation

We define the following operations on ordinals :

140

e addition : o+ 0 = a5+ suc(f) = suc(a+ B);a+ lim(f) = lim(n — a+ f(n))
e multiplication : a-0=0;a - suc(f8) = (- B) + ;- lim(f) = lim(n — a - f(n))
e exponentiation : a® = 1;a5(®) = of . ;') = lim(n — of (™)

22.2 Veblen functions

These functions use fixed points enumaration : ¢(...,[,0,...,0,v) represents the (14~)" common fixed point of the functions
&= p(...,6,&0,...,0) for all § < B.

22.3 Simmons notation

Fixfz = f*(z+4 1) = least fixed point of f strictly greater than z.

Neat = Fiz(a — w®)

[0]h = Fiz(a — h%w) ; [1]hg = Fiz(a — h%gw) ; [2lhgf = Fiz(a — h*gfw) ; etc...

Correspondence with Veblen’s ¢ : ¢(1 + a, 8) = ([0]*Next)Puw; ¢(a, B,v) = ([0° (([1][0])*Newt)) Hw

22.4 RHSO notation

We start from 0, if we don(t see any regularity we take the successor, if we see a regularity, if we have a notation for this
regularity, we use it, else we invent it, then we jump to the limit.

Hfx=limx, fx, f(fx),...; R fgr = lim gx, fgx, ffgz,...; Refghx = lim hx, fghx, fgfghx, ...
Correspondence with Simmons notation : ..., [3] = Rb, [2] — R4, [1] — R3,[0] = R2, Next - R1,w — Hsuc 0

22.5 Ordinal collapsing functions

These functions use uncountable ordinals to define countable ordinals.

We define sets of ordinals that can be built from given ordinals and operations, then we take the least ordinal that is not in
this set, or the least ordinal which is greater than all contable ordinals of this set.

These functions are extensions of functions on countable ordinals, whose fixed points can be reached by applying them to an
uncountable ordinal.

Examples :

e Madore’s ¥ : ¢(a) = €4 if a < (p;9(2) = (o which is the least fixed point of & — &,.

e Feferman’s 0 : 6(«, 8) = ¢(a, B) if a < Ty and 8 < Tg;0(£,0) = T'y which is the least fixed point of a — ¢(«,0).
e Taranovsky’s C : C(a, 8) = 8+ w® if « is countable; C'(21,0) = ¢ which is the least fixed point of & — w®.

141

23 Comparison table

Name Symbol | Algebraic Veblen Simmons RHSO Madore Taranovsky
Zero 0 0 0 0
One 1 1 »(0,0) suc 0 C(0,0)
Two 2 2 suc (suc 0) C(0,C(0,0))
Omega w w »(0,1) w H suc 0 C(1,0)
w+1 suc (H suc 0) C(0,C(1,0))
w-2 H suc (H suc 0) C(1,C(1,0))
w? »(0,2) H (H suc) 0 C(C(0,C(0,0)),0)
w? »(0,w) H H suc 0 C(C(1,0),0)
w” (0, w") H H H suc 0 C(C(C(1,0),0),0)
Epsilon zero €0 = »(1,0) Next w Ry Hsuc 0 ¥ (0) C(£241,0)
€1 (p(l,l) NEItQUJ Rl(RlH)SUC 0 1/)(1) 0(91,0(91,0)
Ew o(l,w) Next*w HR;Hsuc 0 P(w) C(C(0,94),0
€eo o(1,0(1,0)) | NextNeztoy RiHR;Hsuc 0 P(¥(0)) | C(C(C(24,0),€1),0)
Zeta zero Co Co »(2,0) [0]Next w RyR1Hsuc 0 () C(C(Q1,1),0)
Eta zero Mo Mo »(3,0) [0]*Next w Ro(RoRy)H suc 0 C(C(Q,C(2,9)),0)
»(w,0) [0]“ Next w HRsR1Hsuc 0 C(C(C(0,1),81),0)
Feferman Ty Ty ©(1,0,0) [1][0]Next w R3RyR1Hsuc 0 P (QF) C(C(C(q,M),
-Schiitte =¢p(2—1) = R3. 1HsucO 01),0)
Ackermann ©(1,0,0,0) | [1J2[0]Next w | R3(RsRa)RiHsuc 0 | (Q2)
=oB=1)
Small Veblen olw—1) [1]“[0]Next w HR3RyR Hsuc 0 | (%) C(94,0)
ordinal = C(C(C(C(0,9y),
01),01),0)
Large Veblen least ord. | [2][1][0]Next w | R4R3RoRyHsuc 0 H(Q27) C(Q,0)
ordinal not rep. =Ry 1Hsuc0 = C(C(C(C(Q1,8),
Ql)a Ql)7 0)
Bachmann- least ord. R, 1Hsuc0 P(eat1) C(C(Q2,1),0)
Howard not rep.
ordinal
24 Links

e http://www.madore.org/%7Edavid/weblog/2011-09-18-nombres-ordinaux-intro.html : Tutorial introduction to ordinal num-
bers in French
e http://www.madore.org/ david/weblog/d.2017-08-31.2462.ordinaux-interessants.html : ”Petit guide bordélique de quelques
ordinaux intéressants” by David Madore
e https://sites.google.com/site/pointlesslargenumberstuff/home/1/pglin?tmpl=%2Fsystem%2Fapp%2F templates%2F print %2F
: Pointless Gigantic List of Infinite Numbers

e https://sites.google.com/site/largenumbers/home/appendix/a/infinite_numbers :
11" of Infinite Numbers

http://quibb.blogspot.fr/p/infinity-series-portal.html : Professor Quibb’s Infinity Series Portal
http://googology.wikia.com/wiki/Ordinal notation : Ordinal notation
https://sites.google.com/site/travelingtotheinfinity/ : Traveling to the infinity
http://www.cs.man.ac.uk/ hsimmons/TEMP /OrdNotes.pdf : A short introduction to Ordinal Notations by Harold Sim-

mons

around the Bachmann-Howard ordinal by Wilfried Buchholz

142

Sbhiis Saibian’s /Il FORBIDDEN LIST

http://www.mathematik.uni-muenchen.de/ buchholz/articles/jaegerfestschr_buchholz3.pdf : A survey on ordinal notations

http://web.mit.edu/dmytro/www /other/OrdinalNotation.htm : Ordinal Notation by Dmytro Taranovsky
http://arxiv.org/html/1203.2270 : Higher Order Set Theory with Reflective Cardinals by Dmytro Taranovsky
https://wwwl.maths.leeds.ac.uk/ rathjen/realm.pdf : The Realm of Ordinal Analysis by Michael Rathjen
https://www.sciencedirect.com/science/article/pii/0168007287900790 : Ordinal notations based on a hierarchy of inacces-

sible cardinals by Wolfram Pohlers

https://cage.ugent.be/ jvdm/Site/Research_files/DissertationJeroenVanderMeerenPrinted.pdf : Connecting the Two Worlds:
Well-partial-orders and Ordinal Notation Systems by Jeroen Van der Meeren
https://en.wikipedia.org/wiki/Veblen_function : Veblen function on Wikipedia
http://www.ams.org/journals/tran/1908-009-03/S0002-9947-1908-1500814-9/S0002-9947-1908-1500814-9.pdf : Continuous
increasing functions of finite and transfinite ordinals by Oswald Veblen
http://en.wikipedia.org/wiki/Ordinal_collapsing_function : Ordinal collapsing function on Wikipedia
https://en.wikipedia.org/wiki/Buchholz_psi_functions : Buchholz psi functions on Wikipedia
http://www.madore.org/%7Edavid /math/ordtrees.pdf : Ordinal trees

https://johncarlosbaez.wordpress.com /2016 /06 /29 /large-countable-ordinals-part-1/ : Large Countable Ordinals by John
Baez, Part 1

https://johncarlosbaez.wordpress.com/2016/07/04/large-countable-ordinals-part-2/ : Large Countable Ordinals by John
Baez, Part 2

https://johncarlosbaez.wordpress.com/2016/07/07/large-countable-ordinals-part-3/ : Large Countable Ordinals by John
Baez, Part 3
https://medium.com/@joshkerr/mind-blown-the-fast-growing-hierarchy-for-laymen-aka-enormous-numbers-d9a865c6443b :
Mind blown: the fast growing hierarchy for laymen — aka enormous numbers
https://sites.google.com/site/largenumbers/home : Sbiis Saibian’s Large Number Site

https://www.youtube.com /playlist ?1ist=PLUZ0A4xAf7nkaY HtnqVDbHnrXzVAOxYYC : Extremely large numbers (videos)
https://www.youtube.com/playlist ?1ist=PL3A50BBIC34AB36B3 : Ridiculously huge numbers (videos)
http://forums.xked.com/viewtopic.php?f=14&t=7469 : My number is bigger !
http://www.cl.cam.ac.uk/%7Ejrh13/papers/reflect.html : Metatheory and Reflection in Theorem Proving: A Survey and
Critique by John Harrison

http://math.stanford.edu/%7Efeferman/papers/penrose.pdf : Penrose’s Godelian argument by Solomon Feferman
http://www.turingarchive.org/browse.php/B/15 : Systems of logic based on ordinals by Alan Turing
https://coq.inria.fr/documentation : Coq documentation
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Documentation : Agda documentation

143

