0 : faux p =!> q : q -> p p =?> q : hyp [aj(aff(p) q] aff (A /\ B) : aff A; aff B test (A /\ B) : test A; test B aff (A \/ B) : faux -> hyp [aj(aff A) faux] hyp [aj(aff B) faux] ((A =?> 0) /\ (B =?> 0)) =!> 0 test (A \/ B) : hyp [aj (faux->test A aj (faux->test B) faux] ((A =!> 0) /\ (B =!> 0)) =?> 0 p \?/ q : (p =!> 0) =?> (q =!> 0) =?> 0 Pour tout r (p =!> r) =?> (q =!> r) =?> r aff (~A) : faux -> test A A =!> 0 test (~A) : hyp [aj(aff A) faux] A =?> 0 A => B = ~A \/ B = ~(A /\ ~B) aff (A => B) : faux -> test A; hyp [aj (aff B) faux] (A /\ (B =?> 0)) =!> 0 ~! (A /\ ~?B) test (A => B) : hyp [aj (aff A); aj (faux->test B); faux] A =?> (B=!>0) =?> 0 (A /\ (B =!> 0)) =?> 0 ~? (A /\ ~!B) notation : [x] = pour tout x = il existe x aff ([x] Ax) : faux -> soit(x) hyp [aj (aff (Ax)) faux] test ([x] Ax) : hyp [objet(x) Ax] aff ( px) : creer(x) aff(px) test ( px) : hyp [aj (faux->soit(x) test(px) faux] ext reg fond infini [y] (~y:w /\ (w:x [z] (z:x => v:x /\ v = z U {z} ou v > z U {z} v > z U {z} z:v /\ [u] u:z => [y] (~y:w & [x] (x:w (z:x /\ [v] ... [y] (~y:N (w:x) 1 [z] (z:x => (v:x 1 [y] (y:w /\ [x] (w (z:x [v] y =/= x ext y ([z] (z:x <=> z:y) => x=y) regfond y:x paire [xy] [t] (t:z <=> t=x \/ t=y) union [x] [z] (z:y <=> (t:x /\ z:t)) parties [x] [z] (z:y <=> [t] (t:z => t:x)) z=x infini (0:x /\ [y] (y:x => y U {y} : x)) [x1...xk] [x] [z] (z:y => z:x /\ A(z,x1,...,xk)) [x1...xk] [x] (z:y => (u:x /\ A(u,z,x1,...,xk)) <-> z:y) -> x=y y:x y:x & ~ (z:x & z:y) [z] [x] (x:y <=> x:z & PHI(x)) power set [y] (x:y <-> [z] (z:x -> z:w) infinity w [y] (~y:z & [x] (x:w -> (z:w & [u] (u:z <-> v=z \/ v:z)) u=x \/ u:x regl [xyz] PHI(x,y) & PHI(x,z) -> [y] (y:w => x:z & PHI(x,y) sum [x] (x empty [x] ~x:y pair [x] (x:y <-> x:z \/ x:t) infini (0:x /\ [y] (y:x y U {y} : x) dem (dA, dB) prop (pA, pB) subst (p, x, q) ~ dem (d, p) subst (u, u, p) u variable libre -> nombre f subst (f, f, g) g -> G x : ~ dem (d, g) /\ subst (f, f, p) consis : ~ phi rep "0 = 1" |- (~G) => (~consis |- ~G |- dem (d, g) -> |- dem (d', " dem avec "n" = proposition representee par n -> |- dem (d',~g) -> |- dem (d'', g/\~g) dem (d''', phi) avec ~p = {~ p/\q = "{p} /\ {q}" => ~consis) consis => G |- consis A => consis B theories A et B demonstrations transdem transprop A U |- consis A A U consis A U consis (A U consis A) ... ordinaux n ( dem => [n] p(n) cas particulier P = Kq dem (d, "q") => q cas particulier q = (0 = 1) -> |- consis [r] r rep comb => (rep dem) dem (d, " .=>, a=b A -> A U |- ([n] dem (d,

([n] p(n)) cas particulier "v bidon" ord etape 1 -> regle omega