View file src/colab/mnistds_manual_optim.py - Download
# -*- coding: utf-8 -*-
"""mnistds_manual_optim.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1At_O6Cp2t_R4sp51X6OIjVw8Wr2mlq6O
"""
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torchvision.transforms import ToTensor
from torch.utils.data import TensorDataset
import numpy
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
transform = transforms.ToTensor()
training_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
batch_size = 50
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
loss_fn = nn.CrossEntropyLoss()
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
lr = 1e-3
# def train(dataloader, model, loss_fn, optimizer):
def train(dataloader, model, loss_fn):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
# optimizer.zero_grad()
loss.backward()
# optimizer.step()
# Manual optimization
with torch.no_grad():
for p in model.parameters():
p -= lr * p.grad
# p.data.sub_(lr * p.grad.data)
p.grad.zero_()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float32).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
# train(train_dataloader, model, loss_fn, optimizer)
train(train_dataloader, model, loss_fn)
test(test_dataloader, model, loss_fn)
print("Done!")
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
classes = [
"Zero ",
"One ",
"Two ",
"Three",
"Four ",
"Five ",
"Six ",
"Seven",
"Eight",
"Nine ",
]
model.eval()
ngood = 0
nbad = 0
for i in range(100):
x, y = test_data[i][0], test_data[i][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
if predicted == actual:
result = "Good"
ngood = ngood + 1
else:
result = "Bad"
nbad = nbad + 1
print(f'Predicted: "{predicted}", Actual: "{actual}", Result: {result}')
print(f'{ngood} good, {nbad} bad')