View file src/colab/llama_analysis.py - Download

# -*- coding: utf-8 -*-
"""llama_analysis.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1GMb9qz0HfwYhQANh-lEh_puM_fMQGje7
"""

import inspect
import transformers
print(inspect.getfile(transformers))

# Commented out IPython magic to ensure Python compatibility.
# %cd /usr/local/lib/python3.12/dist-packages/transformers

"""Modified version of llama_modeling.py"""

# Commented out IPython magic to ensure Python compatibility.
# %%writefile models/llama/modeling_llama.py
# # coding=utf-8
# # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
# #
# # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# # and OPT implementations in this library. It has been modified from its
# # original forms to accommodate minor architectural differences compared
# # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# #     http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
# 
# print("Chargement de la version modifiée de modeling_llama.py")
# 
# from typing import Callable, Optional, Union
# 
# import torch
# from torch import nn
# 
# from ...activations import ACT2FN
# from ...cache_utils import Cache, DynamicCache
# from ...generation import GenerationMixin
# from ...integrations import use_kernel_forward_from_hub
# from ...masking_utils import create_causal_mask
# from ...modeling_layers import (
#     GenericForQuestionAnswering,
#     GenericForSequenceClassification,
#     GenericForTokenClassification,
#     GradientCheckpointingLayer,
# )
# from ...modeling_outputs import (
#     BaseModelOutputWithPast,
#     CausalLMOutputWithPast,
# )
# from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
# from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
# from ...processing_utils import Unpack
# from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
# from ...utils.generic import check_model_inputs
# from .configuration_llama import LlamaConfig
# 
# 
# logger = logging.get_logger(__name__)
# 
# 
# @use_kernel_forward_from_hub("RMSNorm")
# class LlamaRMSNorm(nn.Module):
#     def __init__(self, hidden_size, eps=1e-6):
#         """
#         LlamaRMSNorm is equivalent to T5LayerNorm
#         """
#         super().__init__()
#         self.weight = nn.Parameter(torch.ones(hidden_size))
#         self.variance_epsilon = eps
# 
#     def forward(self, hidden_states):
#         input_dtype = hidden_states.dtype
#         hidden_states = hidden_states.to(torch.float32)
#         variance = hidden_states.pow(2).mean(-1, keepdim=True)
#         hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
#         return self.weight * hidden_states.to(input_dtype)
# 
#     def extra_repr(self):
#         return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
# 
# 
# class LlamaRotaryEmbedding(nn.Module):
#     def __init__(self, config: LlamaConfig, device=None):
#         super().__init__()
#         # BC: "rope_type" was originally "type"
#         if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
#             self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
#         else:
#             self.rope_type = "default"
#         self.max_seq_len_cached = config.max_position_embeddings
#         self.original_max_seq_len = config.max_position_embeddings
# 
#         self.config = config
#         self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
# 
#         inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
#         self.register_buffer("inv_freq", inv_freq, persistent=False)
#         self.original_inv_freq = self.inv_freq
# 
#     @torch.no_grad()
#     @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
#     def forward(self, x, position_ids):
#         inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
#         position_ids_expanded = position_ids[:, None, :].float()
# 
#         device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
#         with torch.autocast(device_type=device_type, enabled=False):  # Force float32
#             freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
#             emb = torch.cat((freqs, freqs), dim=-1)
#             cos = emb.cos() * self.attention_scaling
#             sin = emb.sin() * self.attention_scaling
# 
#         return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# 
# 
# def rotate_half(x):
#     """Rotates half the hidden dims of the input."""
#     x1 = x[..., : x.shape[-1] // 2]
#     x2 = x[..., x.shape[-1] // 2 :]
#     return torch.cat((-x2, x1), dim=-1)
# 
# 
# def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
#     """Applies Rotary Position Embedding to the query and key tensors.
# 
#     Args:
#         q (`torch.Tensor`): The query tensor.
#         k (`torch.Tensor`): The key tensor.
#         cos (`torch.Tensor`): The cosine part of the rotary embedding.
#         sin (`torch.Tensor`): The sine part of the rotary embedding.
#         position_ids (`torch.Tensor`, *optional*):
#             Deprecated and unused.
#         unsqueeze_dim (`int`, *optional*, defaults to 1):
#             The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
#             sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
#             that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
#             k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
#             cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
#             the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
#     Returns:
#         `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
#     """
#     cos = cos.unsqueeze(unsqueeze_dim)
#     sin = sin.unsqueeze(unsqueeze_dim)
#     q_embed = (q * cos) + (rotate_half(q) * sin)
#     k_embed = (k * cos) + (rotate_half(k) * sin)
#     return q_embed, k_embed
# 
# 
# class LlamaMLP(nn.Module):
#     def __init__(self, config):
#         super().__init__()
#         self.config = config
#         self.hidden_size = config.hidden_size
#         self.intermediate_size = config.intermediate_size
#         self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
#         self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
#         self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
#         self.act_fn = ACT2FN[config.hidden_act]
# 
#     def forward(self, x):
#         down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
#         return down_proj
# 
# 
# def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
#     """
#     This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
#     num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
#     """
#     batch, num_key_value_heads, slen, head_dim = hidden_states.shape
#     if n_rep == 1:
#         return hidden_states
#     hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
#     return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# 
# 
# def eager_attention_forward(
#     module: nn.Module,
#     query: torch.Tensor,
#     key: torch.Tensor,
#     value: torch.Tensor,
#     attention_mask: Optional[torch.Tensor],
#     scaling: float,
#     dropout: float = 0.0,
#     **kwargs: Unpack[TransformersKwargs],
# ):
#     key_states = repeat_kv(key, module.num_key_value_groups)
#     value_states = repeat_kv(value, module.num_key_value_groups)
# 
#     attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
#     if attention_mask is not None:
#         causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
#         attn_weights = attn_weights + causal_mask
# 
#     attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
#     attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
#     attn_output = torch.matmul(attn_weights, value_states)
#     attn_output = attn_output.transpose(1, 2).contiguous()
# 
#     return attn_output, attn_weights
# 
# 
# class LlamaAttention(nn.Module):
#     """Multi-headed attention from 'Attention Is All You Need' paper"""
# 
#     def __init__(self, config: LlamaConfig, layer_idx: int):
#         super().__init__()
#         self.config = config
#         self.layer_idx = layer_idx
#         self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
#         self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
#         self.scaling = self.head_dim**-0.5
#         self.attention_dropout = config.attention_dropout
#         self.is_causal = True
# 
#         self.q_proj = nn.Linear(
#             config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
#         )
#         self.k_proj = nn.Linear(
#             config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
#         )
#         self.v_proj = nn.Linear(
#             config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
#         )
#         self.o_proj = nn.Linear(
#             config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
#         )
# 
#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         position_embeddings: tuple[torch.Tensor, torch.Tensor],
#         attention_mask: Optional[torch.Tensor],
#         past_key_value: Optional[Cache] = None,
#         cache_position: Optional[torch.LongTensor] = None,
#         **kwargs: Unpack[TransformersKwargs],
#     ) -> tuple[torch.Tensor, torch.Tensor]:
#         input_shape = hidden_states.shape[:-1]
#         hidden_shape = (*input_shape, -1, self.head_dim)
# 
#         query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
#         key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
#         value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
# 
#         cos, sin = position_embeddings
#         query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# 
#         if past_key_value is not None:
#             # sin and cos are specific to RoPE models; cache_position needed for the static cache
#             cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
#             key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# 
#         attention_interface: Callable = eager_attention_forward
#         if self.config._attn_implementation != "eager":
#             attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
# 
#         attn_output, attn_weights = attention_interface(
#             self,
#             query_states,
#             key_states,
#             value_states,
#             attention_mask,
#             dropout=0.0 if not self.training else self.attention_dropout,
#             scaling=self.scaling,
#             **kwargs,
#         )
# 
#         attn_output = attn_output.reshape(*input_shape, -1).contiguous()
#         attn_output = self.o_proj(attn_output)
#         return attn_output, attn_weights
# 
# 
# class LlamaDecoderLayer(GradientCheckpointingLayer):
#     def __init__(self, config: LlamaConfig, layer_idx: int):
#         super().__init__()
#         self.hidden_size = config.hidden_size
# 
#         self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx)
# 
#         self.mlp = LlamaMLP(config)
#         self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
#         self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# 
#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.LongTensor] = None,
#         past_key_value: Optional[Cache] = None,
#         use_cache: Optional[bool] = False,
#         cache_position: Optional[torch.LongTensor] = None,
#         position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
#         **kwargs: Unpack[TransformersKwargs],
#     ) -> tuple[torch.Tensor]:
#         residual = hidden_states
#         hidden_states = self.input_layernorm(hidden_states)
#         # Self Attention
#         hidden_states, _ = self.self_attn(
#             hidden_states=hidden_states,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             past_key_value=past_key_value,
#             use_cache=use_cache,
#             cache_position=cache_position,
#             position_embeddings=position_embeddings,
#             **kwargs,
#         )
#         hidden_states = residual + hidden_states
# 
#         # Fully Connected
#         residual = hidden_states
#         hidden_states = self.post_attention_layernorm(hidden_states)
#         hidden_states = self.mlp(hidden_states)
#         hidden_states = residual + hidden_states
#         return hidden_states
# 
# 
# @auto_docstring
# class LlamaPreTrainedModel(PreTrainedModel):
#     config: LlamaConfig
#     base_model_prefix = "model"
#     supports_gradient_checkpointing = True
#     _no_split_modules = ["LlamaDecoderLayer"]
#     _skip_keys_device_placement = ["past_key_values"]
#     _supports_flash_attn = True
#     _supports_sdpa = True
#     _supports_flex_attn = True
# 
#     _can_compile_fullgraph = True
#     _supports_attention_backend = True
#     _can_record_outputs = {
#         "hidden_states": LlamaDecoderLayer,
#         "attentions": LlamaAttention,
#     }
# 
# 
# @auto_docstring
# class LlamaModel(LlamaPreTrainedModel):
#     def __init__(self, config: LlamaConfig):
#         super().__init__(config)
#         self.padding_idx = config.pad_token_id
#         self.vocab_size = config.vocab_size
# 
#         self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
#         self.layers = nn.ModuleList(
#             [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
#         )
#         self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
#         self.rotary_emb = LlamaRotaryEmbedding(config=config)
#         self.gradient_checkpointing = False
# 
#         # Initialize weights and apply final processing
#         self.post_init()
# 
#     @check_model_inputs
#     @auto_docstring
#     def forward(
#         self,
#         input_ids: Optional[torch.LongTensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.LongTensor] = None,
#         past_key_values: Optional[Cache] = None,
#         inputs_embeds: Optional[torch.FloatTensor] = None,
#         cache_position: Optional[torch.LongTensor] = None,
#         use_cache: Optional[bool] = None,
#         **kwargs: Unpack[TransformersKwargs],
#     ) -> BaseModelOutputWithPast:
#         if (input_ids is None) ^ (inputs_embeds is not None):
#             raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
# 
#         if inputs_embeds is None:
#             inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
#             # print(f"inputs_embeds:{inputs_embeds.shape} = {inputs_embeds}")
#             # for i in range(inputs_embeds.shape[1]):
#             #   inputs_embeds[0, i, 100] += 0.15
# 
#         if use_cache and past_key_values is None:
#             past_key_values = DynamicCache()
# 
#         if cache_position is None:
#             past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
#             cache_position: torch.Tensor = torch.arange(
#                 past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
#             )
# 
#         if position_ids is None:
#             position_ids = cache_position.unsqueeze(0)
# 
#         causal_mask = create_causal_mask(
#             config=self.config,
#             input_embeds=inputs_embeds,
#             attention_mask=attention_mask,
#             cache_position=cache_position,
#             past_key_values=past_key_values,
#             position_ids=position_ids,
#         )
# 
#         hidden_states = inputs_embeds
#         position_embeddings = self.rotary_emb(hidden_states, position_ids)
# 
#         for decoder_layer in self.layers[: self.config.num_hidden_layers]:
#             hidden_states = decoder_layer(
#                 hidden_states,
#                 attention_mask=causal_mask,
#                 position_ids=position_ids,
#                 past_key_value=past_key_values,
#                 cache_position=cache_position,
#                 position_embeddings=position_embeddings,
#                 **kwargs,
#             )
# 
#         print(f"hidden_states:{hidden_states.shape} = {hidden_states}")
# 
#         hidden_states = self.norm(hidden_states)
# 
#         # print(f"hidden_states:{hidden_states.shape} = {hidden_states}")
# 
#         # for i in range(hidden_states.shape[1]):
#         #   hidden_states[0, i, 100] += 100
# 
#         # hidden_states = torch.zeros(1, 1, 4096, dtype=torch.float16, device='cuda')
#         # hidden_states[0, 0, 10] = 1
# 
#         return BaseModelOutputWithPast(
#             last_hidden_state=hidden_states,
#             past_key_values=past_key_values,
#         )
# 
# 
# @auto_docstring
# class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
#     _tied_weights_keys = ["lm_head.weight"]
#     _tp_plan = {"lm_head": "colwise_rep"}
#     _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
# 
#     def __init__(self, config):
#         super().__init__(config)
#         self.model = LlamaModel(config)
#         self.vocab_size = config.vocab_size
#         self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# 
#         # Initialize weights and apply final processing
#         self.post_init()
# 
#     def set_decoder(self, decoder):
#         self.model = decoder
# 
#     def get_decoder(self):
#         return self.model
# 
#     @can_return_tuple
#     @auto_docstring
#     def forward(
#         self,
#         input_ids: Optional[torch.LongTensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.LongTensor] = None,
#         past_key_values: Optional[Cache] = None,
#         inputs_embeds: Optional[torch.FloatTensor] = None,
#         labels: Optional[torch.LongTensor] = None,
#         use_cache: Optional[bool] = None,
#         cache_position: Optional[torch.LongTensor] = None,
#         logits_to_keep: Union[int, torch.Tensor] = 0,
#         **kwargs: Unpack[TransformersKwargs],
#     ) -> CausalLMOutputWithPast:
#         r"""
#         Example:
# 
#         ```python
#         >>> from transformers import AutoTokenizer, LlamaForCausalLM
# 
#         >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
#         >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
# 
#         >>> prompt = "Hey, are you conscious? Can you talk to me?"
#         >>> inputs = tokenizer(prompt, return_tensors="pt")
# 
#         >>> # Generate
#         >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
#         >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
#         "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
#         ```"""
#         outputs: BaseModelOutputWithPast = self.model(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             position_ids=position_ids,
#             past_key_values=past_key_values,
#             inputs_embeds=inputs_embeds,
#             use_cache=use_cache,
#             cache_position=cache_position,
#             **kwargs,
#         )
# 
#         hidden_states = outputs.last_hidden_state
#         # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
#         slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
#         logits = self.lm_head(hidden_states[:, slice_indices, :])
# 
#         loss = None
#         if labels is not None:
#             loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
# 
#         return CausalLMOutputWithPast(
#             loss=loss,
#             logits=logits,
#             past_key_values=outputs.past_key_values,
#             hidden_states=outputs.hidden_states,
#             attentions=outputs.attentions,
#         )
# 
# 
# class LlamaForSequenceClassification(GenericForSequenceClassification, LlamaPreTrainedModel): ...
# 
# 
# class LlamaForQuestionAnswering(GenericForQuestionAnswering, LlamaPreTrainedModel):
#     base_model_prefix = "transformer"  # For BC, where `transformer` was used instead of `model`
# 
# 
# class LlamaForTokenClassification(GenericForTokenClassification, LlamaPreTrainedModel): ...
# 
# 
# __all__ = [
#     "LlamaForCausalLM",
#     "LlamaModel",
#     "LlamaPreTrainedModel",
#     "LlamaForSequenceClassification",
#     "LlamaForQuestionAnswering",
#     "LlamaForTokenClassification",
# ]

"""Restart session - Redémarrer la session"""

import os
import signal

# Redémarre le runtime Colab
os.kill(os.getpid(), signal.SIGKILL)

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Chargement du modèle et du tokenizer
model_name = "Upstage/SOLAR-10.7B-Instruct-v1.0"
print("Chargement du tokenizer")
tokenizer = AutoTokenizer.from_pretrained(model_name)
print("")

print("Chargement du modèle")
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)

# Préparer l'entrée
question = "Quelle est la capitale de la France ?"
prompt = "### User:\n" + question + "\n\n### Assistant:\n"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
print(f"input_ids: {input_ids}")

# Paramètres de génération
max_new_tokens = 4096
temperature = 0.7
top_p = 0.9
eos_token_id = tokenizer.eos_token_id

# Mode évaluation
model.eval()

# Liste des tokens générés (on commence avec les tokens d'entrée)
generated = input_ids

print("Generation loop")
for _ in range(100):
    with torch.no_grad():
        # print("")
        # print("Next step")

        # Obtenir les logits pour les derniers tokens uniquement
        # print(f"*** generate *** generated:{generated.shape} = {generated}")
        outputs = model(input_ids=generated, use_cache=True)
        # print(f"*** generate *** logits:{outputs.logits.shape} = {outputs.logits}")
        next_token_logits = outputs.logits[:, -1, :]  # [batch, vocab]
        # print(f"*** generate *** next_token_logits:{next_token_logits.shape} = {next_token_logits}")

        next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)

        # print(f"*** generate *** Next token: {next_token}")

        # Ajouter le token généré
        generated = torch.cat([generated, next_token], dim=-1)

        # Arrêt si EOS token
        if next_token.item() == eos_token_id:
            break

        # break

print(generated[0])

# Décodage du résultat
output_text = tokenizer.decode(generated[0], skip_special_tokens=True)
print(output_text)

print(f"dtype={model.dtype}")
print(f"device={model.device}")

print(max_new_tokens)

import transformers
print("Transformers version:", transformers.__version__)
print("Transformers path:", transformers.__file__)

import transformers
from transformers import AutoModelForCausalLM, AutoConfig

model_name = "Upstage/SOLAR-10.7B-Instruct-v1.0"
config = AutoConfig.from_pretrained(model_name)

print("model_type:", config.model_type)
print("architectures:", config.architectures)

from transformers import AutoModelForCausalLM

# Vérifier la classe réelle instanciée
model_name = "Upstage/SOLAR-10.7B-Instruct-v1.0"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu")

print("Classe réelle :", type(model))

# Retrouver le module où cette classe est définie
print("Module Python :", type(model).__module__)

# Retrouver le fichier source exact
import inspect
print("Fichier source :", inspect.getfile(type(model)))